2,682 research outputs found

    Mechanism of unidirectional movement of kinesin motors

    Full text link
    Kinesin motors have been studied extensively both experimentally and theoretically. However, the microscopic mechanism of the processive movement of kinesin is still an open question. In this paper, we propose a hand-over-hand model for the processivity of kinesin, which is based on chemical, mechanical, and electrical couplings. In the model the processive movement does not need to rely on the two heads' coordination in their ATP hydrolysis and mechanical cycles. Rather, the ATP hydrolyses at the two heads are independent. The much higher ATPase rate at the trailing head than the leading head makes the motor walk processively in a natural way, with one ATP being hydrolyzed per step. The model is consistent with the structural study of kinesin and the measured pathway of the kinesin ATPase. Using the model the estimated driving force of ~ 5.8 pN is in agreements with the experimental results (5~7.5 pN). The prediction of the moving time in one step (~10 microseconds) is also consistent with the measured values of 0~50 microseconds. The previous observation of substeps within the 8-nm step is explained. The shapes of velocity-load (both positive and negative) curves show resemblance to previous experimental results.Comment: 22 pages, 6 figure

    Model for processive movement of myosin V and myosin VI

    Full text link
    Myosin V and myosin VI are two classes of two-headed molecular motors of the myosin superfamily that move processively along helical actin filaments in opposite directions. Here we present a hand-over-hand model for their processive movements. In the model, the moving direction of a dimeric molecular motor is automatically determined by the relative orientation between its two heads at free state and its head's binding orientation on track filament. This determines that myosin V moves toward the barbed end and myosin VI moves toward the pointed end of actin. During the moving period in one step, one head remains bound to actin for myosin V whereas two heads are detached for myosin VI: The moving manner is determined by the length of neck domain. This naturally explains the similar dynamic behaviors but opposite moving directions of myosin VI and mutant myosin V (the neck of which is truncated to only one-sixth of the native length). Because of different moving manners, myosin VI and mutant myosin V exhibit significantly broader step-size distribution than native myosin V. However, all three motors give the same mean step size of 36 nm (the pseudo-repeat of actin helix). Using the model we study the dynamics of myosin V quantitatively, with theoretical results in agreement with previous experimental ones.Comment: 18 pages, 7 figure

    Performance Analysis of Joint Base-Station Multiantenna Multibeam and Channel Assignment Scheme for Hierarchical Cellular System

    Get PDF
    Different from the traditional configuration of hierarchical cellular, we introduce the joint base-station multi-antenna multi-beam and channel assignment scheme for hierarchical cellular in this paper. The proposed scheme is based on multi-beam base-station antenna splitting in the elevation-radiating plane, and a dynamic channel allocation scheme by combining the adaptive antenna technologies. Simulation results show that the proposed configuration of the hierarchical cellular can enhance the spectral efficiency remarkably

    Mid-infrared variability of changing-look AGN

    Get PDF
    It is known that some active galactic nuclei (AGNs) transited from type 1 to type 2 or vice versa. There are two explanations for the so-called changing look AGNs: one is the dramatic change of the obscuration along the line-of-sight, the other is the variation of accretion rate. In this paper, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing look AGNs using WISE and newly released NEOWISE-R data. The mid-infrared light curves of 10 objects echoes the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather supports the scheme of dramatic change in the accretion rate.Comment: Published by ApjL, 7 pages, 3 figures, 2 table

    Discovery of a Mid-infrared Echo from the TDE candidate in the nucleus of ULIRG F01004-2237

    Get PDF
    We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event (TDE) candidate in the center of a nearby ultraluminous infrared galaxy (ULIRG) F01004-2237 using archival {\it WISE} and {\it NEOWISE} data from 2010 to 2016. At the peak of the optical flare, F01004-2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.43.4 and 4.6μ4.6\mum up to the end of 2016. The host-subtracted MIR peak luminosity is 2−3×10442-3\times10^{44}\,erg\,s−1^{-1}. We interpret the MIR LCs as an infrared echo, i.e. dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590−850590-850\,K, and the warm dust mass is ∼7 M⊙\sim7\,M_{\odot}. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 4−11×10444-11\times10^{44}\,erg\,s−1^{-1}. The inferred total IR energy is 1−2×10521-2\times10^{52}\,erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering
    • …
    corecore