Kinesin motors have been studied extensively both experimentally and
theoretically. However, the microscopic mechanism of the processive movement of
kinesin is still an open question. In this paper, we propose a hand-over-hand
model for the processivity of kinesin, which is based on chemical, mechanical,
and electrical couplings. In the model the processive movement does not need to
rely on the two heads' coordination in their ATP hydrolysis and mechanical
cycles. Rather, the ATP hydrolyses at the two heads are independent. The much
higher ATPase rate at the trailing head than the leading head makes the motor
walk processively in a natural way, with one ATP being hydrolyzed per step. The
model is consistent with the structural study of kinesin and the measured
pathway of the kinesin ATPase. Using the model the estimated driving force of ~
5.8 pN is in agreements with the experimental results (5~7.5 pN). The
prediction of the moving time in one step (~10 microseconds) is also consistent
with the measured values of 0~50 microseconds. The previous observation of
substeps within the 8-nm step is explained. The shapes of velocity-load (both
positive and negative) curves show resemblance to previous experimental
results.Comment: 22 pages, 6 figure