4 research outputs found
Developing ecosystem service indicators: experiences and lessons learned from sub-global assessments and other initiatives
People depend upon ecosystems to supply a range of services necessary for their survival and well-being. Ecosystem service indicators are critical for knowing whether or not these essential services are being maintained and used in a sustainable manner, thus enabling policy makers to identify the policies and other interventions needed to better manage them. As a result, ecosystem service indicators are of increasing interest and importance to governmental and inter-governmental processes, including amongst others the Convention on Biological Diversity (CBD) and the Aichi Targets contained within its strategic plan for 2011-2020, as well as the emerging Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Despite this growing demand, assessing ecosystem service status and trends and developing robust indicators is o!en hindered by a lack of information and data, resulting in few available indicators. In response, the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), together with a wide range of international partners and supported by the Swedish International Biodiversity Programme (SwedBio)*, undertook a project to take stock of the key lessons that have been learnt in developing and using ecosystem service indicators in a range of assessment contexts. The project examined the methodologies, metrics and data sources employed in delivering ecosystem service indicators, so as to inform future indicator development. This report presents the principal results of this project
No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction
Microorganisms perform countless tasks on Earth and they are expected to be essential
for human space exploration. Despite the interest in the responses of bacteria to space
conditions, the findings on the effects of microgravity have been contradictory, while
the effects of Martian gravity are nearly unknown. We performed the ESA BioRock
experiment on the International Space Station to study microbe-mineral interactions in
microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground
gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus
subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment
to study simulated Martian gravity on bacteria using a space platform. Here, we tested
the hypothesis that different gravity regimens can influence the final cell concentrations
achieved after a multi-week period in space. Despite the different sedimentation rates
predicted, we found no significant differences in final cell counts and optical densities
between the three gravity regimens on the ISS. This suggests that possible gravityrelated effects on bacterial growth were overcome by the end of the experiment. The
results indicate that microbial-supported bioproduction and life support systems can be
effectively performed in space (e.g., Mars), as on Earth
Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth