2 research outputs found

    CRANIOFACIAL STRESS PATTERNS AND DISPLACEMENTS AFTER ACTIVATION OF HYRAX DEVICE: FINITE ELEMENT MODELLING

    Get PDF
    Rapid maxillary expansion is employed for the treatment of cross-bite and deficiency of transversal dimension of the maxilla in patients with and without cleft of palate and lip. For this procedure, generally, different orthodontic appliances and devices generating significant transversal forces are used. The aim of this study is the finite-element analysis of stresses and displacements of the skull without palate cleft and the skull with unilateral and bilateral cleft after activation of the Hyrax orthodontic device. Two different constructions of the orthodontic device Hyrax with different positions of the screw relative palate are considered. In the first case, the screw is in the occlusal horizontal plane, and in the other, the screw is located near the palate. Activation of the orthodontic device corresponds to the rotation of the screw on one-quarter turn. It is established that the screw position significantly affects the distributions of stresses in skull and displacements of the cranium without palate cleft and with unilateral or bilateral palate cleft. Stresses in the bone structures of the craniums without cleft and with cleft are transferred from the maxilla to the pterygoid plate and pharyngeal tubercle if the screw displaces from the occlusal plane to the palate. Depending on the construction of the orthodontic appliance, the maxilla halves in the transversal plane are unfolded or the whole skull is entirely rotated in the sagittal plane. The stresses patterns and displacements of the skull with bilateral palate cleft are almost unchanged after activation of the orthodontic devices with different positions of the screw, only magnitudes of stresses and displacements are changed. The obtained results can be used for design of orthodontic appliances with the Hyrax screw, as well as for planning of osteotomies during the surgical assistance of the rapid maxillary expansion

    Deformations at the craniofacial complex depending on the hyrax device design

    No full text
    Finite element analysis of the stress-strain state of a human skull after the expansion of the maxilla with using different designs orthodontic appliance HYRAX was carried out. Finite element model of craniofacial complex and supporting teeth are obtained on the basis of tomographic data. An orthodontic appliance differs by the localization of the screw relative to the palate. The design with location of the rods and screw of device in the same horizontal plane as well as the design with the location of the screw at the 8 mm closer to the palate relative to the horizontal localization are considered. Deformations at the intact skull and a skull with a cleft palate were derived. The regions of the largest deformations of the skull bone structures are defined for different orthodontic device designs. Effect of the orthodontic device design on displacements of the supporting teeth is analyzed. The results can be used to design devices HYRAX for the orthodontic correction and treatment of the cross-bite patients
    corecore