302 research outputs found

    Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study

    Get PDF
    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993–1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or “cumulative exposure days” (years of use × days/year); and c) intensity-weighted cumulative exposure days (years of use × days/year × estimated intensity level). Poisson regression was used to estimate exposure–response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers

    An epidemiologic study of early biologic effects of benzene in Chinese workers.

    Get PDF
    Benzene is a recognized hematotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cells levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. All peripheral blood cells levels (i.e., total white blood cells, absolute lymphocyte count, platelets, red blood cells, and hemoglobin) were decreased among exposed workers compared to controls, with the exception of the red blood cell mean corpuscular volume, which was higher among exposed subjects. In contrast, peripheral cytokine levels (interleukin-3, interleukin-6, erythropoietin, granulocyte colony-stimulating factor, tissue necrosis factor-alpha) in a subset of the most highly exposed workers (n = 11) were similar to values in controls (n = 11), suggesting that benzene does not affect these growth factor levels in peripheral blood. The GPA assay measures stem cell or precursor erythroid cell mutations expressed in peripheral red blood cells of MN heterozygous subjects, identifying NN variants, which result from loss of the GPA M allele and duplication of the N allele, and N phi variants, which arise from gene inactivation. The NN (but not N phi) GPA variant cell frequency was elevated in the exposed workers compared with controls (mean +/- SD, 13.9 +/- 8.4 mutants per million cells versus 7.4 +/- 5.2 per million cells, (respectively; p = 0.0002), suggesting that benzene produces gene-duplicating but not gene-inactivating mutations at the GPA locus in bone marrow cells of exposed humans. These findings, combined with ongoing analyses of benzene macromolecular adducts and chromosomal aberrations, will provide an opportunity to comprehensively evaluate a wide range of early biologic effects associated with benzene exposure in humans

    Lessons Learned for the Assessment of Children’s Pesticide Exposure: Critical Sampling and Analytical Issues for Future Studies

    Get PDF
    In this article we examine sampling strategies and analytical methods used in a series of recent studies of children’s exposure to pesticides that may prove useful in the design and implementation of the National Children’s Study. We focus primarily on the experiences of four of the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency/ Children’s Centers and include University of Washington studies that predated these centers. These studies have measured maternal exposures, perinatal exposures, infant and toddler exposures, and exposure among young children through biologic monitoring, personal sampling, and environmental monitoring. Biologic monitoring appears to be the best available method for assessment of children’s exposure to pesticides, with some limitations. It is likely that a combination of biomarkers, environmental measurements, and questionnaires will be needed after careful consideration of the specific hypotheses posed by investigators and the limitations of each exposure metric. The value of environmental measurements, such as surface and toy wipes and indoor air or house dust samples, deserves further investigation. Emphasis on personal rather than environmental sampling in conjunction with urine or blood sampling is likely to be most effective at classifying exposure. For infants and young children, ease of urine collection (possible for extended periods of time) may make these samples the best available approach to capturing exposure variability of nonpersistent pesticides; additional validation studies are needed. Saliva measurements of pesticides, if feasible, would overcome the limitations of urinary metabolite-based exposure analysis. Global positioning system technology appears promising in the delineation of children’s time–location patterns

    Cancer Incidence among Pesticide Applicators Exposed to Cyanazine in the Agricultural Health Study

    Get PDF
    BACKGROUND: Cyanazine is a common pesticide used frequently in the United States during the 1980s and 1990s. Animal and human studies have suggested that triazines may be carcinogenic, but results have been mixed. We evaluated cancer incidence in cyanazine-exposed pesticide applicators among the 57,311 licensed pesticide applicators in the Agricultural Health Study (AHS). METHODS: We obtained detailed pesticide exposure information from a self-administered questionnaire completed at enrollment (1993–1997). Cancer incidence was followed through January 2002. Over half of cyanazine-exposed applicators had ≥ 6 years of exposure at enrollment, and approximately 85% had begun using cyanazine before the 1990s. We used adjusted Poisson regression to calculate rate ratios (RRs) and 95% confidence intervals (CIs) of multiple cancer sites among cyanazine-exposed applicators. We calculated p(trend) values, and all statistical tests were two-sided. Two exposure metrics were used: tertiles of lifetime days of exposure (LD) and intensity-weighted LD. RESULTS: A total of 20,824 cancer-free AHS applicators reported ever using cyanazine at enrollment. Cancer incidence comparisons between applicators with the lowest cyanazine exposure and those with the highest exposure yielded the following for the LD metric: all cancers, RR = 0.99 (95% CI, 0.80–1.24); prostate cancer, RR = 1.23 (95% CI, 0.87–1.70); all lymphohematopoietic cancers, RR = 0.92 (95% CI, 0.50–1.72); non-Hodgkin lymphoma, RR = 1.25 (95% CI, 0.47–3.35); lung cancer, RR = 0.52 (95% CI, 0.22–1.25). CONCLUSIONS: We did not find any clear, consistent associations between cyanazine exposure and any cancer analyzed. The number of sites was small for certain cancers, limiting any conclusion with regard to ovarian, breast, and some other cancers

    Biomonitoring of 2,4-Dichlorophenoxyacetic Acid Exposure and Dose in Farm Families

    Get PDF
    OBJECTIVE: We estimated 2,4-dichlorophenoxyacetic acid (2,4-D) exposure and systemic dose in farm family members following an application of 2,4-D on their farm. METHODS: Farm families were recruited from licensed applicators in Minnesota and South Carolina. Eligible family members collected all urine during five 24-hr intervals, 1 day before through 3 days after an application of 2,4-D. Exposure profiles were characterized with 24-hr urine 2,4-D concentrations, which then were related to potential predictors of exposure. Systemic dose was estimated using the urine collections from the application day through the third day after application. RESULTS: Median urine 2,4-D concentrations at baseline and day after application were 2.1 and 73.1 μ g/L for applicators, below the limit of detection, and 1.2 μ g/L for spouses, and 1.5 and 2.9 μ g/L for children. The younger children (4–11 years of age) had higher median post-application concentrations than the older children (≥ 12 years of age) (6.5 vs. 1.9 μ g/L). The geometric mean systemic doses (micrograms per kilogram body weight) were 2.46 (applicators), 0.8 (spouses), 0.22 (all children), 0.32 (children 4–11 years of age), and 0.12 (children ≥ 12 years of age). Exposure to the spouses and children was primarily determined by direct contact with the application process and the number of acres treated. Multivariate models identified glove use, repairing equipment, and number of acres treated as predictors of exposure in the applicators. CONCLUSIONS: We observed considerable heterogeneity of 2,4-D exposure among farm family members, primarily attributable to level of contact with the application process. Awareness of this variability and the actual magnitude of exposures are important for developing exposure and risk characterizations in 2,4-D–exposed agricultural populations
    corecore