532 research outputs found

    UNOCCUPIED ELECTRONIC STATES OF POTASSIUM AND SODIUM ON Ag(110)

    Get PDF
    Unoccupied electronic states induced by alkali adsorption on a Ag(11O) surface were investigated by inverse photoemission. In addition to electrostatically induced level shifts the formation of energy bands in periodic overlayers was monitored. Despite their chemical similarity considerable differences exist between potassium and sodium induced empty electronic states. The relation of the observed unoccupied bands to the two-dimensional bandstructure of an unsupported alkali metal layer is discussed

    Fluctuations of company yearly profits versus scaled revenue: Fat tail distribution of Levy type

    Full text link
    We analyze annual revenues and earnings data for the 500 largest-revenue U.S. companies during the period 1954-2007. We find that mean year profits are proportional to mean year revenues, exception made for few anomalous years, from which we postulate a linear relation between company expected mean profit and revenue. Mean annual revenues are used to scale both company profits and revenues. Annual profit fluctuations are obtained as difference between actual annual profit and its expected mean value, scaled by a power of the revenue to get a stationary behavior as a function of revenue. We find that profit fluctuations are broadly distributed having approximate power-law tails with a Levy-type exponent α≃1.7\alpha \simeq 1.7, from which we derive the associated break-even probability distribution. The predictions are compared with empirical data.Comment: 6 pages, 6 figure

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press

    Comparison of 3D transitional CFD simulations for rotating wind turbine wings with measurements:Paper

    Get PDF
    Since the investigation of van Ingen et al., attempts were undertaken to search for laminar parts within the boundary layer of wind turbines operating in the lower atmosphere with much higher turbulence levels than seen in wind tunnels or at higher altitudes where airplanes usually fly. Based on the results of the DAN-Aero experiment and the Aerodynamic Glove project, a special work package Boundary Layer Transition was embedded in IAEwind Task 29 MexNext 3rd phase (MN3). Here, we report on the results of the application of various CFD tools to predict transition on the MEXICO blade. In addition, recent results from a comparison of thermographic pictures (aimed at detecting transition) with 3D transitional CFD are included as well. The MEXICO (2006) and NEW MEXICO (2014) wind tunnel experiments on a turbine equipped with three 2.5 m blades have been described extensively in the literature. In addition, during MN3, high-frequency Kulite data from experiments were used to detect traces of transitional effects. Complementary, the following set of codes were applied to cases 1.1 and 1.2 (axial inflow with 10 m/s and 15 m/s respectively) – elsA, CFX, OpenFOAM (with 2 different turbulence/transitional models), Ellipsys, (with 2 different turbulence models and eN transition prediction tool), FLOWer and TAU – to search for detection of laminar parts by means of simulation. Obviously, the flow around a rotating blade is much more complicated than around a simple 2D section. Therefore, results for even integrated quantities like thrust and torque are varying strongly. Nevertheless, visible differences between fully turbulent and transitional set-ups are present. We discuss our findings, especially with respect to turbulence and transition models used

    Microwave Assisted Synthesis of Py-Im Polyamides

    Get PDF
    Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps

    Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space

    Full text link
    Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of dam-aged biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review

    Lifetimes of image-potential states on copper surfaces

    Full text link
    The lifetime of image states, which represent a key quantity to probe the coupling of surface electronic states with the solid substrate, have been recently determined for quantum numbers n≤6n\le 6 on Cu(100) by using time-resolved two-photon photoemission in combination with the coherent excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We here report theoretical investigations of the lifetime of image states on copper surfaces. We evaluate the lifetimes from the knowledge of the self-energy of the excited quasiparticle, which we compute within the GW approximation of many-body theory. Single-particle wave functions are obtained by solving the Schr\"odinger equation with a realistic one-dimensional model potential, and the screened interaction is evaluated in the random-phase approximation (RPA). Our results are in good agreement with the experimentally determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Understanding the limits of Li-NMC811 half-cells

    Get PDF
    As we push the boundaries of state-of-the-art lithium-ion intercalation materials, such as nickel-rich chemistries, the ability to isolate and understand specific degradation and performance limitations is becoming increasingly important. Half-cells, wherein lithium metal is employed as a dual counter and reference electrode, are commonly used in industry and academia for this purpose. However, the high reactivity of lithium metal drives premature electrolyte degradation and limits cell lifetime, bringing into question the reliability and validity of this cell configuration. Here we explore the limitations of half-cell studies of LiNi0.8Mn0.1Co0.1O2 (NMC811) electrodes with commercially relevant loading. We identify the failure mechanism of this cell configuration through a combination of electrochemical, chemical, and spectroscopic techniques and show that the Li has a direct detrimental impact on the NMC811 chemistry. Our measurements show that vinylene carbonate is critical for these half-cell studies and underpins the cycle limits. Furthermore, we demonstrate the use of Li4Ti5O12 (LTO) as an alternative counter electrode for understanding the performance of NMC positive electrode materials, due to its high coulombic efficiency and low reactivity with the organic carbonates routinely employed in lithium-ion battery cell chemistries. These data confirm that NMC811 electrodes can tolerate high voltages (stressed) conditions and that cell failure is mainly a result of crossover effects
    • …
    corecore