137 research outputs found

    Homocysteine and Asymmetric Dimethylarginine (ADMA) in Neurological Diseases

    Get PDF
    Homocysteine (Hcy) is formed from methionine (Met) and is distributed in two metabolic pathways: in the process of remethylation to Met and in the process of transsulfuration to cysteine. Hyperhomocysteinemia (HHcy) is a risk factor for cardiovascular and neurological diseases such as: Alzheimer’s and Parkinson’s diseases, multiple sclerosis, and stroke. Increased Hcy level may lead to endothelial dysfunction due to impaired bioavailability of endothelium-derived nitric oxide (NO). The molecular mechanism decreasing the levels of NO in HHcy conditions is incompletely understood, but it seems that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, may be a key factor. ADMA is formed from L-arginine by enzymes in the family of protein N-methyltransferases (PRMT) and may undergo hydrolysis to L-citrulline and dimethylamine with the participation of dimethylaminohydrolase (DDAH). In pathological conditions such as neurodegenerative diseases, Hcy may lead to increased ADMA concentrations by inhibiting the activity of DDAH. Several drugs, such L-dopa, antiepileptic drugs, and lipid-lowering drugs, may interfere with the metabolic pathways of thiols, leading to an alteration of plasma Hcy and ADMA levels. It seems that administration of L-arginine, in conjunction with B vitamins, to patients with HHcy may be a new method in the treatment of neurodegenerative diseases

    Introductory Chapter: Molecular Basis of Senescence

    Get PDF

    Dopamine and Early Onset Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is divided into early-onset (EOPD) occurring at the age of fewer than 45 years of age and late-onset PD (LOPD) above 45 years of age. EOPD accounts for 5–10% of all the cases with PD. It is thought that occurrence in this age is connected with genetic factors, mutations in e.g. PRKN, PINK1, DJ-1 and changes in proteins it is encoded. The loss of dopaminergic neurons in the nigrostriatal system leads to decreased dopamine (DA) concentrations. Pathogenic PD proteins may affect the DA level. The lower level of DA may be responsible for movement-related symptoms. EOPDs have a slower progression of the disease and a longer disorder duration but tend to develop dyskinesias and motor fluctuations earlier than LOPD. Currently, the diagnosis of PD is based on clinical criteria, supported neuroimaging like MRI or PET. Understanding the pathogenesis of the EOPD may be contributing to improving diagnostics and effectiveness of pharmacotherapy

    12. Extent of the Oxidative Damage to DNA (8-OXO-2DG) in Multiple Sclerosis

    Get PDF

    Migraine and Risk Factors of Vascular Diseases

    Get PDF
    Migraine is a common neurological disease that affects both women and men in a different age. It is believed that migraine is a multifactorial disease with strong genetic and environmental factors. Current molecular studies in migraine are focused on biochemical (homocysteine, asymmetric dimethylarginine) and genetic (ACE, MTHFR, MTR, MTRR, CBS, eNOS, NOTCH3) risk factors associated with vascular diseases. Polymorphisms and mutations in mentioned genes predispose to migraine as well as cardiovascular diseases and stroke. According to the literature data, 13–15% of migraine with aura patients suffer from vascular diseases, too. The strict relation between migraine with aura and stroke is observed in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lifestyle plays an important role both in the pathomechanism of migraine and vascular diseases. Hypertension, obesity, dyslipidemia, and diabetes mellitus are the important risk factors for those pathological conditions. Therefore, early diagnosis of migraine and the implementing effective pharmacotherapy can lead to the prevention of cardiovascular and cerebrovascular diseases

    Antiepileptic Drugs and Risk Factors of Vascular Diseases

    Get PDF
    Epilepsy is one of the most common neurological diseases, affecting approximately 1% of the population. It is a chronic disease and increased incidence falls in the period up to 1 year and 65 years of age. Most patients require long-term antiepileptic drugs (AEDs) therapy. In addition, approximately 30% of patients with epilepsy do not obtain satisfactory seizure control, which is defined as drug-resistant epilepsy. It is postulated that one of the causes of drug resistance can be polymorphisms of ABCB1/MDR1 gene, tested particularly in tumors. It is believed that the old generation of AEDs, e.g. CBZ, VPA, may change plasma Hcy, asymmetric dimethylarginine (ADMA) levels, disturb lipid levels, C-reactive protein, vitamins, markers of oxidative stress, which are risk factors for vascular and neurodegenerative diseases. Changes in the level of risk factors for vascular disease caused by enzymes inducing AEDs, CBZ, PB, and PHT lead to a small increase in the risk of myocardial infarction. Alteration of Hcy and ADMA levels are also linked to genetic factors, e.g. genetic variants of MTHFR, MTR, MTHFD1, CBS, DDAH1, eNOS genes. Individualization of treatment with AEDs and prevention against cardiovascular disease in patients with epilepsy may bring the best therapeutic effects in these patients
    • …
    corecore