711 research outputs found

    Luttinger Liquid in the Core of Screw Dislocation in Helium-4

    Get PDF
    On the basis of first-principle Monte Carlo simulations we find that the screw dislocation along the hexagonal axis of an hcp He4 crystal features a superfluid core. This is the first example of a regular quasi-one-dimensional supersolid, and one of the cleanest cases of a regular Luttinger-liquid system. In contrast, the same type of screw dislocation in solid Hydrogen is insulating.Comment: replaced with revised versio

    Bound states of edge dislocations: The quantum dipole problem in two dimensions

    Full text link
    We investigate bound state solutions of the 2D Schr\"odinger equation with a dipole potential originating from the elastic effects of a single edge dislocation. The knowledge of these states could be useful for understanding a wide variety of physical systems, including superfluid behavior along dislocations in solid 4^4He. We present a review of the results obtained by previous workers together with an improved variational estimate of the ground state energy. We then numerically solve the eigenvalue problem and calculate the energy spectrum. In our dimensionless units, we find a ground state energy of -0.139, which is lower than any previous estimate. We also make successful contact with the behavior of the energy spectrum as derived from semiclassical considerations.Comment: 6 pages, 3 figures, submitted to PR

    Double sign reversal of the vortex Hall effect in YBa2Cu3O7-delta thin films in the strong pinning limit of low magnetic fields

    Full text link
    Measurements of the Hall effect and the resistivity in twinned YBa2Cu3O7-delta thin films in magnetic fields B oriented parallel to the crystallographic c-axis and to the twin boundaries reveal a double sign reversal of the Hall coefficient for B below 1 T. In high transport current densities, or with B tilted off the twin boundaries by 5 degrees, the second sign reversal vanishes. The power-law scaling of the Hall conductivity to the longitudinal conductivity in the mixed state is strongly modified in the regime of the second sign reversal. Our observations are interpreted as strong, disorder-type dependent vortex pinning and confirm that the Hall conductivity in high temperature superconductors is not independent of pinning.Comment: 4 pages, 4 figure

    Charge Transport in the Dense Two-Dimensional Coulomb Gas

    Full text link
    The dynamics of a globally neutral system of diffusing Coulomb charges in two dimensions, driven by an applied electric field, is studied in a wide temperature range around the Berezinskii-Kosterlitz-Thouless transition. I argue that the commonly accepted ``free particle drift'' mechanism of charge transport in this system is limited to relatively low particle densities. For higher densities, I propose a modified picture involving collective ``partner transfer'' between bound pairs. The new picture provides a natural explanation for recent experimental and numerical findings which deviate from standard theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final version to be published in Phys. Rev. Let

    Non-adiabaticity and single-electron transport driven by surface acoustic waves

    Full text link
    Single-electron transport driven by surface acoustic waves (SAW) through a narrow constriction, formed in two-dimensional electron gas, is studied theoretically. Due to long-range Coulomb interaction, the tunneling coupling between the electron gas and the moving minimum of the SAW-induced potential rapidly decays with time. As a result, nonadiabaticiy sets a limit for the accuracy of the quantization of acoustoelectric current

    On the superconductivity in the system with preformed pairs

    Full text link
    We discuss the phenomenology of the superconductivity resulting from the bose condensation of the preformed pairs coexisting with unpaired fermions. We show that this transition is more mean field like than usual bose condensation, i.e. it is characterized by a relatively small value of the Ginzburg parameter. We consider the Hall effect in the vortex flow regime and in the fluctuational regime above TcT_c and show that in this situation it is much less than in the transition driven entirely by bose condesation but much larger than in a usual superconductivity. We analyse the available Hall data and conclude that this phenomenology describes reasonably well the data in the underdoped materials of YBaCuOYBaCuO family but is not an appropriate description of optimally doped materials or underdoped LaSrCuOLaSrCuO.Comment: Latex/Revtex file, 2 Postscript figures, 10 page

    Solitons on the edge of a two-dimensional electron system

    Full text link
    We present a study of the excitations of the edge of a two-dimensional electron droplet in a magnetic field in terms of a contour dynamics formalism. We find that, beyond the usual linear approximation, the non-linear analysis yields soliton solutions which correspond to uniformly rotating shapes. These modes are found from a perturbative treatment of a non-linear eigenvalue problem, and as solutions to a modified Korteweg-de Vries equation resulting from a local induction approximation to the nonlocal contour dynamics. We discuss applications to the edge modes in the quantum Hall effect.Comment: 4 pages, 2 eps figures (included); to appear in Phys. Rev. Letter

    Hall Anomaly and Vortex-Lattice Melting in Superconducting Single Crystal YBa2Cu3O7-d

    Full text link
    Sub-nanovolt resolution longitudinal and Hall voltages are measured in an ultra pure YBa2Cu3O7-d single crystal. The Hall anomaly and the first-order vortex-lattice melting transition are observed simultaneously. Changes in the dynamic behavior of the vortex solid and liquid are correlated with features of the Hall conductivity sxy. With the magnetic field oriented at an angle from the twin-boundaries, the Hall conductivity sharply decreases toward large negative values at the vortex-lattice melting transition.Comment: 6 pages, 2 figures included, Postscript, to appear in Phys. Rev. Let

    The effect of phase fluctuations on the single-particle properties of the underdoped cuprates

    Full text link
    We study the effect of order parameter phase fluctuations on the single-particle properties of fermions in the underdoped cuprate superconductors using a phenomenological low-energy theory. We identify the fermion-phase field coupling as the Doppler-shift of the quasiparticle spectrum induced by the fluctuating superfluid velocity and we calculate the effect of these fluctuations on the fermion self-energy. We show that the vortex pair unbinding near the superconducting transition causes a significant broadening in the fermion spectral function, producing a pseudogap-like feature. We also discuss the specific heat and show that the phase fluctuation effect is visible due to the short coherence length.Comment: RevTex 11 pages; 11 epsf figures included. Added and updated reference

    The ac magnetic response of mesoscopic type II superconductors

    Full text link
    The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis of the time-dependent Ginzburg-Landau equations (TDGL). We study the dependence with frequency ω\omega and dc magnetic field HdcH_{dc} of the linear ac susceptibility χ(Hdc,ω)\chi(H_{dc}, \omega) in square samples with dimensions of the order of the London penetration depth. At Hdc=0H_{dc}=0 the behavior of χ\chi as a function of ω\omega agrees very well with the two fluid model, and the imaginary part of the ac susceptibility, χ"(ω)\chi"(\omega), shows a dissipative a maximum at the frequency νo=c2/(4πσλ2)\nu_o=c^2/(4\pi \sigma\lambda^2). In the presence of a magnetic field a second dissipation maximum appears at a frequency ωpν0\omega_p\ll\nu_0. The most interesting behavior of mesoscopic superconductors can be observed in the χ(Hdc)\chi(H_{dc}) curves obtained at a fixed frequency. At a fixed number of vortices, χ"(Hdc)\chi"(H_{dc}) continuously increases with increasing HdcH_{dc}. We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing discontinuities in χ"(Hdc)\chi"(H_{dc}) at several values of HdcH_{dc}. We show that these discontinuities are typical of the mesoscopic scale and disappear in macroscopic samples, which have a continuos behavior of χ(Hdc)\chi(H_{dc}). We argue that these discontinuities in χ(Hdc)\chi(H_{dc}) are due to the effect of {\it nascent vortices} which cause a large variation of the amplitude of the order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex
    corecore