3 research outputs found

    Comparison Of The Genesis Solar Wind Regime Algorithm Results With Solar Wind Composition Observed By ACE

    Get PDF
    Launched on 8 August 2001, the NASA Genesis mission is now collecting samples of the solar wind in various materials, and will return those samples to Earth in 2004 for analysis. A primary science goal of Genesis is the determination of the isotopic and elemental composition of the solar atmosphere from the solar wind material returned. In particular, Genesis will provide measurements of those species that are not provided by solar and in situ observations. We know from in situ measurements that the solar wind exhibits compositional variations across different types of solar wind flows. Therefore, Genesis exposes different collectors to solar wind originating from three flow types: coronal hole, coronal mass ejection (CME), and interstream flows. Flow types are identified using in situ measurements of solar wind protons, alphas, and electrons from electrostatic analyzers carried by Genesis. The flow regime selection algorithm and subsequent collector deployment on Genesis act autonomously. We present an assessment of composition variations of O, He, and Mg ions observed by ACE/SWICS concurrent with Genesis observations, and compare these to the Genesis algorithm decisions. Not only does this serve as a test of the algorithm, the compilation of composition vs. regime will be important for comparison to the abundances determined from sample analysis at the end of the mission. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87657/2/632_1.pd

    Genesis Mission to Return Solar Wind Samples to Earth

    Get PDF
    The Genesis spacecraft, launched on 8 August 2001 from Cape Canaveral, Florida, will be the first spacecraft ever to return from interplanetary space. The fifth in NASAs line of low-cost, Discovery-class missions, its goal is to collect samples of solar wind and return them to Earth for detailed isotopic and elemental analysis. The spacecraft is to collect solar wind for over 2 years, while circling the L1 point 1.5 million km Sunward of the Earth, before heading back for a capsule-style re-entry in September 2004. After parachute deployments mid-air helicopter recovery will be used to avoid a hard landing. The mission has been in development over 10 years, and its cost, including development, mission operations, and initial sample analysis, is approximately $209 million
    corecore