134 research outputs found

    Optically reconfigurable 1 x 4 remote node switch for access networks

    Get PDF
    In this paper we demonstrate an optically controlled 1 x 4 remote node switch, based on membrane InP switches bonded to a silicon-on-insulator circuit. We show that the switch exhibits cross talk better than 25 dB between the output ports, and that the switch operates without receiver sensitivity penalty. Furthermore, the proposed switch architecture allows for optical clock distribution as a means to avoid the need for clock recovery at the receiver side. This is demonstrated in a proof-of-principle experiment where data and clock are sent through a single membrane InP switch

    Performance assessment of optical packet switching system with burst-mode receivers for intra-data centre networks

    Get PDF
    We investigate the performance of a burst-mode receiver in an optical packet switching system. Experimental results indicate that a preamble of 25.6ns allows error-free operation of 10Gb/s asynchronous switched packets with 8dB dynamic range and 25ns minimum guard-time

    In-band label extractor based on Cascaded Si ring resonators enabling 160 Gb/s optical packet switching modules

    Get PDF
    Photonic integration of optical packet switching modules is crucial to compete with existing electronic switching fabrics in large data center networks. The approach of coding the forwarding packet information in an in-band label enables a spectral-efficient and scalable way of building low-latency large port count modular optical packet switching architecture. We demonstrate the error-free operation of the four in-band label extraction from 160 Gb/s optical data packets based on photonic integrated silicon-on- insulator ring resonators. Four low-loss cascaded ring resonators using the quasi-TM mode are used as narrowband filters to ensure the detection of four optical labels as well as the error-free forwarding of the payload at limited power penalty. Due to the low-loss and less-confined optical quasi-TM mode the resonators can be very narrowband and have low insertion loss. The effect of the bandwidth of the four ring resonators on the quality of the payload is investigated. We show that using four rings with 3dB bandwidth of 21 pm and only an insertion loss of 3 dB, the distortion on the payload is limited (< 1.5 dB power penalty), even when the resonances are placed very close to the packet's central wavelength. We also investigate the optical power requirements for error-free detection of the label as function of their spectral position relative to the center of the payload. The successful in-band positioning of the labels makes this component very scalable in amount of labels

    All-optical wavelength conversion using mode switching in InP microdisc laser

    Get PDF
    Wavelength conversion using an indium phosphide based microdisc laser (MDL) heterogeneously integrated on a silicon-on-insulator waveguide is reported. Several lasing modes are present within the disc cavity, between which wavelength conversion can be performed by mode switching and spectral filtering. For the first time, low-power wavelength up- and downconversion using one single MDL is demonstrated. Operation with a bit error rate below 10(-9) at 2.5 Gbit/s and operation below the forward-error-correction limit of 10(-3) at 10 Gbit/s are shown without the use of additional seeding beams

    Introduction: ECOC 2012 in Amsterdam

    Full text link

    A fast and comprehensive microdisc laser model applied to all-optical wavelength conversion

    Get PDF
    Microdisc lasers (MDLs) are an attractive option for on-chip laser sources, wavelength converters and even all-optical optical memory. We have developed a comprehensive model for the wavelength conversion in MDLs, which is compared with measurements

    A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide

    Get PDF
    We report on the modulation characteristics of indium phosphide (InP) based microdisks heterogeneously integrated on a silicon–on–insulator (SOI) waveguide. We present static extinction ratios and dynamic operation up to 10 Gb/s. Operation with a bit–error rate below 1 × 10-9 is demonstrated at 2.5, 5.0 and 10.0 Gb/s and the performance is compared with that of a commercial modulator. Power penalties are analyzed with respect to the pattern length. The power consumption is calculated and compared with state–of–the–art integrated modulator concepts. We demonstrate that InP microdisk modulators combine low–power and low–voltage operation with low footprint and high–speed. Moreover, the devices can be fabricated using the same technology as for lasers, detectors and wavelength converters, making them very attractive for co–integration

    All-Optical Techniques Enabling Packet Switching with Label Processing and Label Rewriting, Journal of Telecommunications and Information Technology, 2009, nr 1

    Get PDF
    Scalability of packet switched cross-connects that utilize all-optical signal processing is a crucial issue that eventually determines the future role of photonic signal processing in optical networks. After reviewing several labeling techniques, we discuss label stacking and label swapping techniques and their benefits for scalable optical packet switched nodes. All-optical devices for implementing the packet switch based on the labeling techniques will be described. Finally, we present a 1×4 all-optical packet switch based on label swapping technique that utilizes a scalable and asynchronous label processor and label rewriter. Error-free operation indicates a potential utilization of the swapping technique in a multihop packet-switched network
    corecore