47 research outputs found

    Autistic disorder associated with a paternally derived unbalanced translocation leading to duplication of chromosome 15pter-q13.2: a case report

    Get PDF
    Autism spectrum disorders have been associated with maternally derived duplications that involve the imprinted region on the proximal long arm of chromosome 15. Here we describe a boy with a chromosome 15 duplication arising from a 3:1 segregation error of a paternally derived translocation between chromosome 15q13.2 and chromosome 9q34.12, which led to trisomy of chromosome 15pter-q13.2 and 9q34.12-qter. Using array comparative genome hybridization, we localized the breakpoints on both chromosomes and sequence homology suggests that the translocation arose from non-allelic homologous recombination involving the low copy repeats on chromosome 15. The child manifests many characteristics of the maternally-derived duplication chromosome 15 phenotype including developmental delays with cognitive impairment, autism, hypotonia and facial dysmorphisms with nominal overlap of the most general symptoms found in duplications of chromosome 9q34. This case suggests that biallelically expressed genes on proximal 15q contribute to the idic(15) autism phenotype

    Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders<abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15)] that has been called inverted duplication 15 or isodicentric 15 [idic(15)], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR) that are found clustered in the region. Five recurrent breakpoints have been described in most cases of segmental aneuploidy of chromosome 15q11-q13 and previous studies have shown that most idic(15) chromosomes arise through BP3:BP3 or BP4:BP5 recombination events.</p> <p>Results</p> <p>Here we describe four duplication chromosomes that show evidence of atypical recombination events that involve regions outside the common breakpoints. Additionally, in one patient with a mosaic complex der(15), we examined homologous pairing of chromosome 15q11-q13 alleles by FISH in a region of frontal cortex, which identified mosaicism in this tissue and also demonstrated pairing of the signals from the der(15) and the normal homologues.</p> <p>Conclusion</p> <p>Involvement of atypical BP in the generation of idic(15) chromosomes can lead to considerable structural heterogeneity.</p

    Functional analysis of a recurrent missense mutation in Notch3 in CADASIL

    No full text
    Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular dementia characterised by recurrent ischemic strokes in the deep white matter. Mutations in the gene encoding the cell surface receptor, Notch3, have been identified in CADASIL patients, and accumulation of the extracellular domain of Notch3 has been demonstrated in affected vessels. Almost all CADASIL mutations alter the number of cysteine residues in the epidermal growth factor (EGF)-like repeats in the extracellular domain of the protein. Objectives: To understand the functional consequences of a recurrent CADASIL mutation on furin processing, cell surface expression, ligand binding, and activation of a downstream effector CBF1 by the Notch3 receptor. Methods: We expressed wild type and mutant Notch3 receptors in cultured cells and examined cell surface expression of the proteins. We also applied a new flow cytometry based approach to semi-quantitatively measure binding to three Notch ligands. Additionally, we used a well characterised co-culture system to examine ligand dependent activation of transcription from a CBF1-luciferase reporter construct. Results: These studies revealed subtle abnormalities in furin processing of the mutant receptor, although both heterodimeric and full length receptors are present on the cell surface, are capable of interacting with soluble forms of three ligands, Delta1, Delta4, and Jagged1, and retain the ability to activate CBF1 in a ligand dependent manner. Conclusions: By comparison with other mutant forms of Notch3, these data indicate that individual CADASIL mutations can have disparate effects on Notch3 expression and function

    Urinary phenylacetylglutamine as dosing biomarker for patients with urea cycle disorders

    No full text
    UnlabelledWe have analyzed pharmacokinetic data for glycerol phenylbutyrate (also GT4P or HPN-100) and sodium phenylbutyrate with respect to possible dosing biomarkers in patients with urea cycle disorders (UCD).Study designThese analyses are based on over 3000 urine and plasma data points from 54 adult and 11 pediatric UCD patients (ages 6-17) who participated in three clinical studies comparing ammonia control and pharmacokinetics during steady state treatment with glycerol phenylbutyrate or sodium phenylbutyrate. All patients received phenylbutyric acid equivalent doses of glycerol phenylbutyrate or sodium phenylbutyrate in a cross over fashion and underwent 24-hour blood samples and urine sampling for phenylbutyric acid, phenylacetic acid and phenylacetylglutamine.ResultsPatients received phenylbutyric acid equivalent doses of glycerol phenylbutyrate ranging from 1.5 to 31.8 g/day and of sodium phenylbutyrate ranging from 1.3 to 31.7 g/day. Plasma metabolite levels varied widely, with average fluctuation indices ranging from 1979% to 5690% for phenylbutyric acid, 843% to 3931% for phenylacetic acid, and 881% to 1434% for phenylacetylglutamine. Mean percent recovery of phenylbutyric acid as urinary phenylacetylglutamine was 66.4 and 69.0 for pediatric patients and 68.7 and 71.4 for adult patients on glycerol phenylbutyrate and sodium phenylbutyrate, respectively. The correlation with dose was strongest for urinary phenylacetylglutamine excretion, either as morning spot urine (r = 0.730, p &lt; 0.001) or as total 24-hour excretion (r = 0.791 p&lt;0.001), followed by plasma phenylacetylglutamine AUC(24-hour), plasma phenylacetic acid AUC(24-hour) and phenylbutyric acid AUC(24-hour). Plasma phenylacetic acid levels in adult and pediatric patients did not show a consistent relationship with either urinary phenylacetylglutamine or ammonia control.ConclusionThe findings are collectively consistent with substantial yet variable pre-systemic (1st pass) conversion of phenylbutyric acid to phenylacetic acid and/or phenylacetylglutamine. The variability of blood metabolite levels during the day, their weaker correlation with dose, the need for multiple blood samples to capture trough and peak, and the inconsistency between phenylacetic acid and urinary phenylacetylglutamine as a marker of waste nitrogen scavenging limit the utility of plasma levels for therapeutic monitoring. By contrast, 24-hour urinary phenylacetylglutamine and morning spot urine phenylacetylglutamine correlate strongly with dose and appear to be clinically useful non-invasive biomarkers for compliance and therapeutic monitoring

    A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay.

    No full text
    Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C&gt;T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who&nbsp;underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p&nbsp;= 1.25&nbsp;× 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1
    corecore