2 research outputs found

    Computational investigation on the conformational dynamics of C-terminal truncated α-synuclein bound to membrane

    No full text
    Accelerated progression rates in Parkinson’s disease (PD) have been linked to C-terminal domain (CTD) truncations of monomeric α-Synuclein (α-Syn), which have been suggested to increase amyloid aggregation in vivo and in vitro. In the brain of PD patients, CTD truncated α-Syn was found to have lower cell viability and tends to increase in the formation of fibrils. The CTD of α-Syn acts as a guard for regulating the normal functioning of α-Syn. The absence of the CTD may allow the N-terminal of α-Syn to interact with the membrane thereby affecting the normal functioning of α-Syn, and all of which will affect the etiology of PD. In this study, the conformational dynamics of CTD truncated α-Syn (1–99 and 1–108) monomers and their effect on the protein–membrane interactions were demonstrated using the all-atom molecular dynamics (MD) simulation method. From the MD analyses, it was noticed that among the two truncated monomers, α-Syn (1–108) was found to be more stable, shows rigidness at the N-terminal region and contains a significant number of intermolecular hydrogen bonds between the non-amyloid β-component (NAC) region and membrane, and lesser number of extended strands. Further, the bending angle in the N-terminal domain was found to be lesser in the α-Syn (1–108) in comparison with the α-Syn (1–99). Our findings suggest that the truncation on the CTD of α-Syn affects its interaction with the membrane and subsequently has an impact on the aggregation. Communicated by Ramaswamy H. Sarma</p

    Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions

    No full text
    Parkinson’s disease (PD) is associated with α-synuclein (α-Syn), a presynaptic protein that binds to cell membranes. The molecular pathophysiology of PD most likely begins with the binding of α-Syn to membranes. Recently, two peptidomimetic inhibitors (NPT100-18A and NPT200-11) were identified to potentially interact with α-Syn and affect the interaction of α-Syn with the membrane. In this study, the effect of the two peptidomimetic inhibitors on the α-Syn-membrane interaction was demonstrated. DFT calculations were performed for optimization of the two inhibitors, and the nucleophilicity (N) and electrophilicity (ω) of NPT100-18A and NPT200-11 were calculated to be 3.90 and 3.86 (N); 1.06 and 1.04 (ω), respectively. Using the docking tool (CB-dock2), the two α-Syn-peptidomimetic inhibitor complexes (α-Syn-NPT100-18A and α-Syn-NPT200-11) have been prepared. Then all-atom molecular dynamics (MD) simulation was carried out on the α-Syn (control), α-Syn-NPT100-18A and α-Syn-NPT200-11 complex systems in presence of DOPE: DOPS: DOPC (5:3:2) lipid bilayer. From the conformational dynamics analysis, the 3-D structure of α-Syn was found to be stable, and the helices present in the regions (1–37) and (45–95) of α-Syn were found to be retained in the presence of the two peptidomimetic inhibitors. The electron density profile analysis revealed the binding modes of NAC and C-terminal region of α-Syn (in the presence of NPT200-11 inhibitor) with lipid membrane are in the close vicinity from the lipid bilayer centre. Our findings in this study on α-Syn-membrane interactions may be useful for developing a new therapeutic approach for treating PD and other neurodegenerative disorders. Communicated by Ramaswamy H. Sarma</p
    corecore