896 research outputs found

    Searching for coherent pulsations in ultraluminous X-ray sources

    Full text link
    Luminosities of ultraluminous X-ray sources (ULXs) are uncomfortably large if compared to the Eddington limit for isotropic accretion onto stellar-mass object. Most often either supercritical accretion onto stellar mass black hole or accretion onto intermediate mass black holes is invoked the high luminosities of ULXs. However, the recent discovery of coherent pulsations from M82 ULX with NuSTAR showed that another scenario implying accretion onto a magnetized neutron star is possible for ULXs. Motivated by this discovery, we re-visited the available XMM-Newton archival observations of several bright ULXs with a targeted search for pulsations to check whether accreting neutron stars might power other ULXs as well. We have found no evidence for significant coherent pulsations in any of the sources including the M82 ULX. We provide upper limits for the amplitude of possibly undetected pulsed signal for the sources in the sample.Comment: 2 pages, 1 figure, submitted to A&

    Supergiant, fast, but not so transient 4U 1907+09

    Full text link
    We have investigated the dipping activity observed in the high-mass X-ray binary 4U 1907+09 and shown that the source continues to pulsate in the "off" state, noting that the transition between the "on" and "off" states may be either dip-like or flare-like. This behavior may be explained in the framework of the "gated accretion" scenario proposed to explain the flares in supergiant fast X-ray transients (SFXTs). We conclude that 4U 1907+09 might prove to be a missing link between the SFXTs and ordinary accreting pulsars.Comment: 4 pages 5 figures, accepted in A&

    Population of the Galactic X-ray binaries and eRosita

    Full text link
    The population of the Galactic X-ray binaries has been mostly probed with moderately sensitive hard X-ray surveys so far. The eRosita mission will provide, for the first time a sensitive all-sky X-ray survey in the 2-10 keV energy range, where the X-ray binaries emit most of the flux and discover the still unobserved low-luminosity population of these objects. In this paper, we briefly review the current constraints for the X-ray luminosity functions of high- and low-mass X-ray binaries and present our own analysis based the INTEGRAL 9-year Galactic survey, which yields improved constraints. Based on these results, we estimate the number of new XRBs to be detected in the eRosita all-sky surveyComment: accepted for publication in A&

    Optical and near-infrared photometric monitoring of the transient X-ray binary A0538-66 with REM

    Get PDF
    The transient Be/X-ray binary A0538-66 shows peculiar X-ray and optical variability. Despite numerous studies, the intrinsic properties underlying its anomalous behaviour remain poorly understood. Since 2014 September we are conducting the first quasi-simultaneous optical and near-infrared photometric monitoring of A0538-66 in seven filters with the Rapid Eye Mount (REM) telescope, aiming to understand the properties of this binary system. We found that the REM lightcurves show fast flares lasting one or two days that repeat almost regularly every ~16.6 days, the orbital period of the neutron star. If the optical flares are powered by X-ray outbursts through photon reprocessing, the REM lightcurves indicate that A0538-66 is still active in X-rays: bright X-ray flares (L_x > 1E37 erg/s) could be observable during the periastron passages. The REM lightcurves show a long-term variability that is especially pronounced in the g band and decreases with increasing wavelength, until it no longer appears in the near-infrared lightcurves. In addition, A0538-66 is fainter with respect to previous optical observations most likely due to the higher absorption of the stellar radiation of a denser circumstellar disc. On the basis of the current models, we interpret these observational results with a circumstellar disc around the Be star observed nearly edge-on during a partial depletion phase. The REM lightcurves also show short-term variability on timescales of ~1 day possibly indicative of perturbations in the density distribution of the circumstellar disc caused by the tidal interaction with the neutron star.Comment: Accepted for publication in Astronomy & Astrophysic

    Properties and observability of glitches and anti-glitches in accreting pulsars

    Get PDF
    Several glitches have been observed in young, isolated radio pulsars, while a clear detection in accretion-powered X-ray pulsars is still lacking. We use the Pizzochero snowplow model for pulsar glitches as well as starquake models to determine for the first time the expected properties of glitches in accreting pulsars and their observability. Since some accreting pulsars show accretion-induced long-term spin-up, we also investigate the possibility that anti-glitches occur in these stars. We find that glitches caused by quakes in a slow accreting neutron star are very rare and their detection extremely unlikely. On the contrary, glitches and anti-glitches caused by a transfer of angular momentum between the superfluid neutron vortices and the non-superfluid component may take place in accreting pulsars more often. We calculate the maximum jump in angular velocity of an anti-glitch and we find that it is expected to be about 1E-5 - 1E-4 rad/s. We also note that since accreting pulsars usually have rotational angular velocities lower than those of isolated glitching pulsars, both glitches and anti-glitches are expected to have long rise and recovery timescales compared to isolated glitching pulsars, with glitches and anti-glitches appearing as a simple step in angular velocity. Among accreting pulsars, we find that GX 1+4 is the best candidate for the detection of glitches with currently operating X-ray instruments and future missions such as the proposed Large Observatory for X-ray Timing (LOFT).Comment: Accepted for publication in Astronomy & Astrophysics. 6 pages. Minor changes to match the final A&A versio

    Spectral and temporal properties of the supergiant fast X-ray transient IGR J18483-0311 observed by INTEGRAL

    Full text link
    IGR J18483-0311 is a supergiant fast X-ray transient whose compact object is located in a wide (18.5 d) and eccentric (e~0.4) orbit, which shows sporadic outbursts that reach X-ray luminosities of ~1e36 erg/s. We investigated the timing properties of IGR J18483-0311 and studied the spectra during bright outbursts by fitting physical models based on thermal and bulk Comptonization processes for accreting compact objects. We analysed archival INTEGRAL data collected in the period 2003-2010, focusing on the observations with IGR J18483-0311 in outburst. We searched for pulsations in the INTEGRAL light curves of each outburst. We took advantage of the broadband observing capability of INTEGRAL for the spectral analysis. We observed 15 outbursts, seven of which we report here for the first time. This data analysis almost doubles the statistics of flares of this binary system detected by INTEGRAL. A refined timing analysis did not reveal a significant periodicity in the INTEGRAL observation where a ~21s pulsation was previously detected. Neither did we find evidence for pulsations in the X-ray light curve of an archival XMM-Newton observation of IGR J18483-0311. In the light of these results the nature of the compact object in IGR J18483-0311 is unclear. The broadband X-ray spectrum of IGR J18483-0311 in outburst is well fitted by a thermal and bulk Comptonization model of blackbody seed photons by the infalling material in the accretion column of a neutron star. We also obtained a new measurement of the orbital period using the Swift/BAT light curve.Comment: Accepted for publication in Astronomy and Astrophysics. 8 page

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c−1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c−2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c−2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Polarimetry of the Type Ia Supernova SN 1996X

    Full text link
    We present broad-band and spectropolarimetry of the Type Ia SN 1996X obtained on April 14, 1996 (UT), and broad-band polarimetry of SN 1996X on May 22,1996, when the supernova was about a week before and 4 weeks after optical maximum, respectively. The Stokes parameters derived from the broad-band polarimetry are consistent with zero polarization. The spectropolarimetry, however, shows broad spectral features which are due intrinsically to an asymmetric SN atmosphere. The spectral features in the flux spectrum and the polarization spectrum show correlations in the wavelength range from 4900 AA up to 5500 AA. The degree of this intrinsic component is low (<0.3 %). Theoretical polarization spectra have been calculated. It is shown that the polarization spectra are governed by line blending. Consequently, for similar geometrical distortions, the residual polarization is smaller by about a factor of 2 to 3 compared to the less blended Type II atmosphere, making it intrinsically harder to detect asphericities in SNIa. Comparison with theoretical model polarization spectra shows a resemblance to the observations. Taken literally, this implies an asphericity of about 11 % in the chemical distribution in the region of partial burning. This may not imperil the use of Type Ia supernovae as standard candles for distance determination, but nontheless poses a source of uncertainty. SN 1996X is the first Type Ia supernova for which spectropolarimetry revealed a polarized component intrinsic to the supernova and the first Type Ia with spectropolarimetry well prior to optical maximum.Comment: 7 pages, 5 figures, macros 'aas2pp4.sty,psfig.tex'. LaTeX Style. Astrophysical Journal Letters, submitted September 199
    • …
    corecore