348 research outputs found
Zero mode effect in the four quark states
We calculate the masses of the four quark states which decay
dominantly into and respectively by QCD sum rules approach.
We include the zero mode contribution and find it plays an important role in
the sum rules. We predict that the masses of the states and
both are 1.4-1.5 GeV. This is close to the experimental candidates
and .Comment: 5 pages, 4 Postscript figure
Multi-Instanton Effects in QCD Sum Rules for the Pion
Multi-instanton contributions to QCD sum rules for the pion are investigated
within a framework which models the QCD vacuum as an instanton liquid. It is
shown that in singular gauge the sum of planar diagrams in leading order of the
expansion provides similar results as the effective single-instanton
contribution. These effects are also analysed in regular gauge. Our findings
confirm that at large distances the correlator functions are more adequately
described in the singular gauge rather than in the regular one.Comment: 11 pages RevTeX is use
Analytical Results for Random Band Matrices with Preferential Basis
Using the supersymmetry method we analytically calculate the local density of
states, the localiztion length, the generalized inverse participation ratios,
and the distribution function of eigenvector components for the superposition
of a random band matrix with a strongly fluctuating diagonal matrix. In this
way we extend previously known results for ordinary band matrices to the class
of random band matrices with preferential basis. Our analytical results are in
good agreement with (but more general than) recent numerical findings by
Jacquod and Shepelyansky.Comment: 8 pages RevTex and 1 Figure, both uuencode
Localized to extended states transition for two interacting particles in a two-dimensional random potential
We show by a numerical procedure that a short-range interaction induces
extended two-particle states in a two-dimensional random potential. Our
procedure treats the interaction as a perturbation and solve Dyson's equation
exactly in the subspace of doubly occupied sites. We consider long bars of
several widths and extract the macroscopic localization and correlation lengths
by an scaling analysis of the renormalized decay length of the bars. For ,
the critical disorder found is , and the critical
exponent . For two non-interacting particles we do not find any
transition and the localization length is roughly half the one-particle value,
as expected.Comment: 4 two-column pages, 4 eps figures, Revtex, to be published in
Europhys. Let
How the recent BABAR data for P to \gamma\gamma* affect the Standard Model predictions for the rare decays P to l+l-
Measuring the lepton anomalous magnetic moments and the rare decays
of light pseudoscalar mesons into lepton pairs , serve as
important tests of the Standard Model. To reduce the theoretical uncertainty in
the standard model predictions, the data on the charge and transition form
factors of the light pseudoscalar mesons play a significant role. Recently, new
data on the behavior of the transition form factors at
large momentum transfer were supplied by the BABAR collaboration. There are
several problems with the theoretical interpretation of these data: 1) An
unexpectedly slow decrease of the pion transition form factor at high momenta,
2) the qualitative difference in the behavior of the pion form factor and the
and form factors at high momenta, 3) the inconsistency of
the measured ratio of the and form factors with the
predicted one. We comment on the influence of the new BABAR data on the rare
decay branchings.Comment: 11 pages, 3 figure
Magnetic-Field Dependence of the Localization Length in Anderson Insulators
Using the conventional scaling approach as well as the renormalization group
analysis in dimensions, we calculate the localization length
in the presence of a magnetic field . For the quasi 1D case the
results are consistent with a universal increase of by a numerical
factor when the magnetic field is in the range
\ell\ll{\ell_{\!{_H}}}\alt\xi(0), is the mean free path,
is the magnetic length . However, for
where the magnetic field does cause delocalization there is no
universal relation between and . The effect of spin-orbit
interaction is briefly considered as well.Comment: 4 pages, revtex, no figures; to be published in Europhysics Letter
Localization length in Dorokhov's microscopic model of multichannel wires
We derive exact quantum expressions for the localization length for
weak disorder in two- and three chain tight-binding systems coupled by random
nearest-neighbour interchain hopping terms and including random energies of the
atomic sites. These quasi-1D systems are the two- and three channel versions of
Dorokhov's model of localization in a wire of periodically arranged atomic
chains. We find that for the considered systems with
, where is Thouless' quantum expression for the inverse
localization length in a single 1D Anderson chain, for weak disorder. The
inverse localization length is defined from the exponential decay of the
two-probe Landauer conductance, which is determined from an earlier transfer
matrix solution of the Schr\"{o}dinger equation in a Bloch basis. Our exact
expressions above differ qualitatively from Dorokhov's localization length
identified as the length scaling parameter in his scaling description of the
distribution of the participation ratio. For N=3 we also discuss the case where
the coupled chains are arranged on a strip rather than periodically on a tube.
From the transfer matrix treatment we also obtain reflection coefficients
matrices which allow us to find mean free paths and to discuss their relation
to localization lengths in the two- and three channel systems
The Generalized Star Product and the Factorization of Scattering Matrices on Graphs
In this article we continue our analysis of Schr\"odinger operators on
arbitrary graphs given as certain Laplace operators. In the present paper we
give the proof of the composition rule for the scattering matrices. This
composition rule gives the scattering matrix of a graph as a generalized star
product of the scattering matrices corresponding to its subgraphs. We perform a
detailed analysis of the generalized star product for arbitrary unitary
matrices. The relation to the theory of transfer matrices is also discussed
Localization fom conductance in few-channel disordered wires
We study localization in two- and three channel quasi-1D systems using
multichain tight-binding Anderson models with nearest-neighbour interchain
hopping. In the three chain case we discuss both the case of free- and that of
periodic boundary conditions between the chains. The finite disordered wires
are connected to ideal leads and the localization length is defined from the
Landauer conductance in terms of the transmission coefficients matrix. The
transmission- and reflection amplitudes in properly defined quantum channels
are obtained from S-matrices constructed from transfer matrices in Bloch wave
bases for the various quasi-1D systems. Our exact analytic expressions for
localization lengths for weak disorder reduce to the Thouless expression for 1D
systems in the limit of vanishing interchain hopping. For weak interchain
hopping the localization length decreases with respect to the 1D value in all
three cases. In the three-channel cases it increases with interchain hopping
over restricted domains of large hopping
Statistical Scattering of Waves in Disordered Waveguides: from Microscopic Potentials to Limiting Macroscopic Statistics
We study the statistical properties of wave scattering in a disordered
waveguide. The statistical properties of a "building block" of length (delta)L
are derived from a potential model and used to find the evolution with length
of the expectation value of physical quantities. In the potential model the
scattering units consist of thin potential slices, idealized as delta slices,
perpendicular to the longitudinal direction of the waveguide; the variation of
the potential in the transverse direction may be arbitrary. The sets of
parameters defining a given slice are taken to be statistically independent
from those of any other slice and identically distributed. In the
dense-weak-scattering limit, in which the potential slices are very weak and
their linear density is very large, so that the resulting mean free paths are
fixed, the corresponding statistical properties of the full waveguide depend
only on the mean free paths and on no other property of the slice distribution.
The universality that arises demonstrates the existence of a generalized
central-limit theorem.
Our final result is a diffusion equation in the space of transfer matrices of
our system, which describes the evolution with the length L of the disordered
waveguide of the transport properties of interest. In contrast to earlier
publications, in the present analysis the energy of the incident particle is
fully taken into account.Comment: 75 pages, 10 figures, submitted to Phys. Rev
- …