348 research outputs found

    Zero mode effect in the 1+1^{-+} four quark states

    Full text link
    We calculate the masses of the 1+1^{-+} four quark states which decay dominantly into ρπ\rho\pi and ηπ\eta\pi respectively by QCD sum rules approach. We include the zero mode contribution and find it plays an important role in the sum rules. We predict that the masses of the states ηπ\eta\pi and ρπ\rho\pi both are 1.4-1.5 GeV. This is close to the experimental candidates π1(1370)\pi_1(1370) and π1(1440)\pi_1(1440).Comment: 5 pages, 4 Postscript figure

    Multi-Instanton Effects in QCD Sum Rules for the Pion

    Get PDF
    Multi-instanton contributions to QCD sum rules for the pion are investigated within a framework which models the QCD vacuum as an instanton liquid. It is shown that in singular gauge the sum of planar diagrams in leading order of the 1/Nc1/N_{c} expansion provides similar results as the effective single-instanton contribution. These effects are also analysed in regular gauge. Our findings confirm that at large distances the correlator functions are more adequately described in the singular gauge rather than in the regular one.Comment: 11 pages RevTeX is use

    Analytical Results for Random Band Matrices with Preferential Basis

    Full text link
    Using the supersymmetry method we analytically calculate the local density of states, the localiztion length, the generalized inverse participation ratios, and the distribution function of eigenvector components for the superposition of a random band matrix with a strongly fluctuating diagonal matrix. In this way we extend previously known results for ordinary band matrices to the class of random band matrices with preferential basis. Our analytical results are in good agreement with (but more general than) recent numerical findings by Jacquod and Shepelyansky.Comment: 8 pages RevTex and 1 Figure, both uuencode

    Localized to extended states transition for two interacting particles in a two-dimensional random potential

    Full text link
    We show by a numerical procedure that a short-range interaction uu induces extended two-particle states in a two-dimensional random potential. Our procedure treats the interaction as a perturbation and solve Dyson's equation exactly in the subspace of doubly occupied sites. We consider long bars of several widths and extract the macroscopic localization and correlation lengths by an scaling analysis of the renormalized decay length of the bars. For u=1u=1, the critical disorder found is Wc=9.3±0.2W_{\rm c}=9.3\pm 0.2, and the critical exponent ν=2.4±0.5\nu=2.4\pm 0.5. For two non-interacting particles we do not find any transition and the localization length is roughly half the one-particle value, as expected.Comment: 4 two-column pages, 4 eps figures, Revtex, to be published in Europhys. Let

    How the recent BABAR data for P to \gamma\gamma* affect the Standard Model predictions for the rare decays P to l+l-

    Full text link
    Measuring the lepton anomalous magnetic moments (g2)(g-2) and the rare decays of light pseudoscalar mesons into lepton pairs Pl+lP\to l^{+}l^{-} , serve as important tests of the Standard Model. To reduce the theoretical uncertainty in the standard model predictions, the data on the charge and transition form factors of the light pseudoscalar mesons play a significant role. Recently, new data on the behavior of the transition form factors PγγP\to\gamma\gamma* at large momentum transfer were supplied by the BABAR collaboration. There are several problems with the theoretical interpretation of these data: 1) An unexpectedly slow decrease of the pion transition form factor at high momenta, 2) the qualitative difference in the behavior of the pion form factor and the η\eta and η\eta^\prime form factors at high momenta, 3) the inconsistency of the measured ratio of the η\eta and η\eta^\prime form factors with the predicted one. We comment on the influence of the new BABAR data on the rare decay branchings.Comment: 11 pages, 3 figure

    Magnetic-Field Dependence of the Localization Length in Anderson Insulators

    Full text link
    Using the conventional scaling approach as well as the renormalization group analysis in d=2+ϵd=2+\epsilon dimensions, we calculate the localization length ξ(B)\xi(B) in the presence of a magnetic field BB. For the quasi 1D case the results are consistent with a universal increase of ξ(B)\xi(B) by a numerical factor when the magnetic field is in the range \ell\ll{\ell_{\!{_H}}}\alt\xi(0), \ell is the mean free path,  ⁣H{\ell_{\!{_H}}} is the magnetic length c/eB\sqrt{\hbar c/eB}. However, for d2d\ge 2 where the magnetic field does cause delocalization there is no universal relation between ξ(B)\xi(B) and ξ(0)\xi(0). The effect of spin-orbit interaction is briefly considered as well.Comment: 4 pages, revtex, no figures; to be published in Europhysics Letter

    Localization length in Dorokhov's microscopic model of multichannel wires

    Full text link
    We derive exact quantum expressions for the localization length LcL_c for weak disorder in two- and three chain tight-binding systems coupled by random nearest-neighbour interchain hopping terms and including random energies of the atomic sites. These quasi-1D systems are the two- and three channel versions of Dorokhov's model of localization in a wire of NN periodically arranged atomic chains. We find that Lc1=N.ξ1L^{-1}_c=N.\xi^{-1} for the considered systems with N=(1,2,3)N=(1,2,3), where ξ\xi is Thouless' quantum expression for the inverse localization length in a single 1D Anderson chain, for weak disorder. The inverse localization length is defined from the exponential decay of the two-probe Landauer conductance, which is determined from an earlier transfer matrix solution of the Schr\"{o}dinger equation in a Bloch basis. Our exact expressions above differ qualitatively from Dorokhov's localization length identified as the length scaling parameter in his scaling description of the distribution of the participation ratio. For N=3 we also discuss the case where the coupled chains are arranged on a strip rather than periodically on a tube. From the transfer matrix treatment we also obtain reflection coefficients matrices which allow us to find mean free paths and to discuss their relation to localization lengths in the two- and three channel systems

    The Generalized Star Product and the Factorization of Scattering Matrices on Graphs

    Full text link
    In this article we continue our analysis of Schr\"odinger operators on arbitrary graphs given as certain Laplace operators. In the present paper we give the proof of the composition rule for the scattering matrices. This composition rule gives the scattering matrix of a graph as a generalized star product of the scattering matrices corresponding to its subgraphs. We perform a detailed analysis of the generalized star product for arbitrary unitary matrices. The relation to the theory of transfer matrices is also discussed

    Localization fom conductance in few-channel disordered wires

    Full text link
    We study localization in two- and three channel quasi-1D systems using multichain tight-binding Anderson models with nearest-neighbour interchain hopping. In the three chain case we discuss both the case of free- and that of periodic boundary conditions between the chains. The finite disordered wires are connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the transmission coefficients matrix. The transmission- and reflection amplitudes in properly defined quantum channels are obtained from S-matrices constructed from transfer matrices in Bloch wave bases for the various quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it increases with interchain hopping over restricted domains of large hopping

    Statistical Scattering of Waves in Disordered Waveguides: from Microscopic Potentials to Limiting Macroscopic Statistics

    Full text link
    We study the statistical properties of wave scattering in a disordered waveguide. The statistical properties of a "building block" of length (delta)L are derived from a potential model and used to find the evolution with length of the expectation value of physical quantities. In the potential model the scattering units consist of thin potential slices, idealized as delta slices, perpendicular to the longitudinal direction of the waveguide; the variation of the potential in the transverse direction may be arbitrary. The sets of parameters defining a given slice are taken to be statistically independent from those of any other slice and identically distributed. In the dense-weak-scattering limit, in which the potential slices are very weak and their linear density is very large, so that the resulting mean free paths are fixed, the corresponding statistical properties of the full waveguide depend only on the mean free paths and on no other property of the slice distribution. The universality that arises demonstrates the existence of a generalized central-limit theorem. Our final result is a diffusion equation in the space of transfer matrices of our system, which describes the evolution with the length L of the disordered waveguide of the transport properties of interest. In contrast to earlier publications, in the present analysis the energy of the incident particle is fully taken into account.Comment: 75 pages, 10 figures, submitted to Phys. Rev
    corecore