940 research outputs found

    Spontaneous symmetry breaking for long-wave gravitons in the early Universe

    Full text link
    It is shown that nonlinear terms in equations of gravitons on the background of curved space-time of the expanding Universe can solve the problem of the negative square of the effective mass formally arising in linear approximation for gravitons. Similar to well known spontaneous breaking of symmetry in Goldstone model one must take another vacuum so that nonzero vacuum expectation value of the quantized graviton field leads to change of spectrum for gravitons. There appears two graviton fields, one with the positive mass, another with the zero mass. Energy density and the density of particles created by gravitation of the expanding Universe are calculated for some special cases of the scale factor. Numerical results are obtained for the dust universe case.Comment: 13 page

    Can Parity Violation in Neutrino Transport Lead to Pulsar Kicks?

    Get PDF
    In magnetized proto-neutron stars, neutrino cross sections depend asymmetrically on the neutrino momenta due to parity violation. However, these asymmetric opacities do not induce any asymmetric flux in the bulk interior of the star where neutrinos are nearly in thermal equilibrium. Consequently, parity violation in neutrino absorption and scattering can only give rise to asymmetric neutrino flux above the neutrino-matter decoupling layer. The kick velocity is substantially reduced from previous estimates, requiring a dipole field B1016B \sim 10^{16}~G to get vkickv_{kick} of order a few hundred km~s1^{-1}.Comment: REVTEX, 4 pages, no figures. Submitted to Phys. Rev. Letter

    Neutrino Emission from Magnetized Proto-Neutron Stars in Relativistic Mean Field Theory

    Full text link
    We make a perturbative calculation of neutrino scattering and absorption in hot and dense hyperonic neutron-star matter in the presence of a strong magnetic field. We find that the absorption cross-sections show a remarkable angular dependence in that the neutrino absorption strength is reduced in a direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetry in the neutrino absorbtion can be as much as 2.2 % of the entire neutrino momentum for an interior magnetic field of \sim 2 x 10^{17} G. We estimate the pulsar kick velocities associated with this asymmetry in a fully relativistic mean-field theory formulation. We show that the kick velocities calculated here are comparable to observed pulsar velocities.Comment: arXiv admin note: substantial text overlap with arXiv:1009.097

    Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks

    Get PDF
    In proto-neutron stars with strong magnetic fields, the neutrino-nucleon scattering/absorption cross sections depend on the direction of neutrino momentum with respect to the magnetic field axis, a manifestation of parity violation in weak interactions. We study the deleptonization and thermal cooling (via neutrino emission) of proto-neutron stars in the presence of such asymmetric neutrino opacities. Significant asymmetry in neutrino emission is obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic field threading the neutron star interior, the fractional asymmetry in neutrino emission is about 0.006(B/1014G)0.006 (B/10^{14}G), corresponding to a pulsar kick velocity of about 200(B/1014G)200 (B/10^{14}G) km/s for a total radiated neutrino energy of 3×10533\times 10^{53} erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March 10, 1998). Shortened to agree with the published versio

    On the Possible Enhancement of the Magnetic Field by Neutrino Reemission Processes in the Mantle of a Supernova

    Get PDF
    URCA neutrino reemission processes under the conditions in the mantle of a supernova with a strong toroidal magnetic field are investigated. It is shown that parity violation in these processes can be manifested macroscopically as a torque that rapidly spins up the region of the mantle occupied by such a field. Neutrino spin-up of the mantle can strongly affect the mechanism of further generation of the toroidal field, specifically, it can enhance the field in a small neighborhood of the rigid-body-rotating core of the supernova remnant.Comment: 8 pages, late

    The DRIFT Dark Matter Experiments

    Full text link
    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Spin-down of neutron stars by neutrino emission

    Full text link
    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1 % of the star angular momentum, a result which is much less than previously estimated by other authors.Comment: 9 pages, 2 eps figures, RevTeX 4-1. The paper was significantly modified. Now it addresses only the issues of a neutron star spin-down. Version to be published in Phys. Rev.

    Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology

    Get PDF
    In proto-neutron stars with strong magnetic fields, the cross section for νe\nu_e (νˉe\bar\nu_e) absorption on neutrons (protons) depends on the local magnetic field strength due to the quantization of energy levels for the ee^- (e+e^+) produced in the final state. If the neutron star possesses an asymmetric magnetic field topology in the sense that the magnitude of magnetic field in the north pole is different from that in the south pole, then asymmetric neutrino emission may be generated. We calculate the absorption cross sections of \nue and \bnue in strong magnetic fields as a function of the neutrino energy. These cross sections exhibit oscillatory behaviors which occur because new Landau levels for the ee^- (e+e^+) become accessible as the neutrino energy increases. By evaluating the appropriately averaged neutrino opacities, we demonstrate that the change in the local neutrino flux due to the modified opacities is rather small. To generate appreciable kick velocity (300\sim 300 km~s1^{-1}) to the newly-formed neutron star, the difference in the field strengths at the two opposite poles of the star must be at least 101610^{16}~G. We also consider the magnetic field effect on the spectral neutrino energy fluxes. The oscillatory features in the absorption opacities give rise to modulations in the emergent spectra of νe\nu_e and νˉe\bar\nu_e.Comment: AASTeX, 25 pages. Expanded introduction and references. This revised version was accepted by ApJ in April 1998 (to appear in the Oct 1 issue
    corecore