940 research outputs found
Spontaneous symmetry breaking for long-wave gravitons in the early Universe
It is shown that nonlinear terms in equations of gravitons on the background
of curved space-time of the expanding Universe can solve the problem of the
negative square of the effective mass formally arising in linear approximation
for gravitons. Similar to well known spontaneous breaking of symmetry in
Goldstone model one must take another vacuum so that nonzero vacuum expectation
value of the quantized graviton field leads to change of spectrum for
gravitons. There appears two graviton fields, one with the positive mass,
another with the zero mass. Energy density and the density of particles created
by gravitation of the expanding Universe are calculated for some special cases
of the scale factor. Numerical results are obtained for the dust universe case.Comment: 13 page
Can Parity Violation in Neutrino Transport Lead to Pulsar Kicks?
In magnetized proto-neutron stars, neutrino cross sections depend
asymmetrically on the neutrino momenta due to parity violation. However, these
asymmetric opacities do not induce any asymmetric flux in the bulk interior of
the star where neutrinos are nearly in thermal equilibrium. Consequently,
parity violation in neutrino absorption and scattering can only give rise to
asymmetric neutrino flux above the neutrino-matter decoupling layer. The kick
velocity is substantially reduced from previous estimates, requiring a dipole
field ~G to get of order a few hundred km~s.Comment: REVTEX, 4 pages, no figures. Submitted to Phys. Rev. Letter
Neutrino Emission from Magnetized Proto-Neutron Stars in Relativistic Mean Field Theory
We make a perturbative calculation of neutrino scattering and absorption in
hot and dense hyperonic neutron-star matter in the presence of a strong
magnetic field. We find that the absorption cross-sections show a remarkable
angular dependence in that the neutrino absorption strength is reduced in a
direction parallel to the magnetic field and enhanced in the opposite
direction. This asymmetry in the neutrino absorbtion can be as much as 2.2 % of
the entire neutrino momentum for an interior magnetic field of \sim 2 x 10^{17}
G. We estimate the pulsar kick velocities associated with this asymmetry in a
fully relativistic mean-field theory formulation. We show that the kick
velocities calculated here are comparable to observed pulsar velocities.Comment: arXiv admin note: substantial text overlap with arXiv:1009.097
Parity Violation in Neutrino Transport and the Origin of Pulsar Kicks
In proto-neutron stars with strong magnetic fields, the neutrino-nucleon
scattering/absorption cross sections depend on the direction of neutrino
momentum with respect to the magnetic field axis, a manifestation of parity
violation in weak interactions. We study the deleptonization and thermal
cooling (via neutrino emission) of proto-neutron stars in the presence of such
asymmetric neutrino opacities. Significant asymmetry in neutrino emission is
obtained due to multiple neutrino-nucleon scatterings. For an ordered magnetic
field threading the neutron star interior, the fractional asymmetry in neutrino
emission is about , corresponding to a pulsar kick velocity
of about km/s for a total radiated neutrino energy of
erg.Comment: AASTeX, 10 pages including 2 ps figures; ApJ Letter in press (March
10, 1998). Shortened to agree with the published versio
On the Possible Enhancement of the Magnetic Field by Neutrino Reemission Processes in the Mantle of a Supernova
URCA neutrino reemission processes under the conditions in the mantle of a
supernova with a strong toroidal magnetic field are investigated. It is shown
that parity violation in these processes can be manifested macroscopically as a
torque that rapidly spins up the region of the mantle occupied by such a field.
Neutrino spin-up of the mantle can strongly affect the mechanism of further
generation of the toroidal field, specifically, it can enhance the field in a
small neighborhood of the rigid-body-rotating core of the supernova remnant.Comment: 8 pages, late
The DRIFT Dark Matter Experiments
The current status of the DRIFT (Directional Recoil Identification From
Tracks) experiment at Boulby Mine is presented, including the latest limits on
the WIMP spin-dependent cross-section from 1.5 kg days of running with a
mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with
ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale
directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
Spin-down of neutron stars by neutrino emission
We study the spin-down of a neutron star during its early stages due to the
neutrino emission. The mechanism we consider is the subsequent collisions of
the produced neutrinos with the outer shells of the star. We find that this
mechanism can indeed slow down the star rotation but only in the first tens of
seconds of the core formation, which is when the appropriate conditions of flux
and collision rate are met. We find that this mechanism can extract less than 1
% of the star angular momentum, a result which is much less than previously
estimated by other authors.Comment: 9 pages, 2 eps figures, RevTeX 4-1. The paper was significantly
modified. Now it addresses only the issues of a neutron star spin-down.
Version to be published in Phys. Rev.
Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology
In proto-neutron stars with strong magnetic fields, the cross section for
() absorption on neutrons (protons) depends on the local
magnetic field strength due to the quantization of energy levels for the
() produced in the final state. If the neutron star possesses an
asymmetric magnetic field topology in the sense that the magnitude of magnetic
field in the north pole is different from that in the south pole, then
asymmetric neutrino emission may be generated. We calculate the absorption
cross sections of \nue and \bnue in strong magnetic fields as a function of
the neutrino energy. These cross sections exhibit oscillatory behaviors which
occur because new Landau levels for the () become accessible as the
neutrino energy increases. By evaluating the appropriately averaged neutrino
opacities, we demonstrate that the change in the local neutrino flux due to the
modified opacities is rather small. To generate appreciable kick velocity
( km~s) to the newly-formed neutron star, the difference in
the field strengths at the two opposite poles of the star must be at least
~G. We also consider the magnetic field effect on the spectral
neutrino energy fluxes. The oscillatory features in the absorption opacities
give rise to modulations in the emergent spectra of and .Comment: AASTeX, 25 pages. Expanded introduction and references. This revised
version was accepted by ApJ in April 1998 (to appear in the Oct 1 issue
- …
