18 research outputs found

    A chemical probe based on the PreQ1 metabolite enables transcriptome-wide mapping of binding sites

    Get PDF
    The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs

    Glycogen synthase kinase 3 controls migration of the neural crest lineage in mouse and Xenopus

    Get PDF
    Defects in neural crest development cause neurocristopathies and cancer, but what regulates this is unclear. Here, the authors show that glycogen synthase kinase 3 (GSK3) regulates migration of neural crest cells, as shown on genetic deletion of GSK3 in the mouse, and that this acts via anaplastic lymphoma kinase

    Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions

    Get PDF
    Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield-scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.</p

    Is the timing of fixation associated with fracture-related infection among tibial plateau fracture patients with compartment syndrome? A multicenter retrospective cohort study of 729 patients.

    No full text
    BACKGROUND: Tibial plateau fractures with an ipsilateral compartment syndrome are a clinical challenge with limited guidance regarding the best time to perform open reduction and internal fixation (ORIF) relative to fasciotomy wound closure. This study aimed to determine if the risk of fracture-related infection (FRI) differs based on the timing of tibial plateau ORIF relative to closure of ipsilateral fasciotomy wounds. METHODS: A retrospective cohort study identified patients with tibial plateau fractures and an ipsilateral compartment syndrome treated with 4-compartment fasciotomy at 22 US trauma centers from 2009 to 2019. The primary outcome measure was FRI requiring operative debridement after ORIF. The ORIF timing relative to fasciotomy closure was categorized as ORIF before, at the same time as, or after fasciotomy closure. Bayesian hierarchical regression models with a neutral prior were used to determine the association between timing of ORIF and infection. The posterior probability of treatment benefit for ORIF was also determined for the three timings of ORIF relative to fasciotomy closure. RESULTS: Of the 729 patients who underwent ORIF of their tibial plateau fracture, 143 (19.6%) subsequently developed a FRI requiring operative treatment. Patients sustaining infections were: 21.0% of those with ORIF before (43 of 205), 15.9% at the same time as (37 of 232), and 21.6% after fasciotomy wound closure (63 of 292). ORIF at the same time as fasciotomy closure demonstrated a 91% probability of being superior to before closure (RR, 0.75; 95% CrI, 0.38 to 1.10). ORIF after fasciotomy closure had a lower likelihood (45%) of a superior outcome than before closure (RR, 1.02; 95% CrI; 0.64 to 1.39). CONCLUSION: Data from this multicenter cohort confirms previous reports of a high FRI risk in patients with a tibial plateau fracture and ipsilateral compartment syndrome. Our results suggest that ORIF at the time of fasciotomy closure has the highest probability of treatment benefit, but that infection was common with all three timings of ORIF in this difficult clinical situation

    Is the timing of fixation associated with fracture-related infection among tibial plateau fracture patients with compartment syndrome? A multicenter retrospective cohort study of 729 patients.

    No full text
    BACKGROUND: Tibial plateau fractures with an ipsilateral compartment syndrome are a clinical challenge with limited guidance regarding the best time to perform open reduction and internal fixation (ORIF) relative to fasciotomy wound closure. This study aimed to determine if the risk of fracture-related infection (FRI) differs based on the timing of tibial plateau ORIF relative to closure of ipsilateral fasciotomy wounds. METHODS: A retrospective cohort study identified patients with tibial plateau fractures and an ipsilateral compartment syndrome treated with 4-compartment fasciotomy at 22 US trauma centers from 2009 to 2019. The primary outcome measure was FRI requiring operative debridement after ORIF. The ORIF timing relative to fasciotomy closure was categorized as ORIF before, at the same time as, or after fasciotomy closure. Bayesian hierarchical regression models with a neutral prior were used to determine the association between timing of ORIF and infection. The posterior probability of treatment benefit for ORIF was also determined for the three timings of ORIF relative to fasciotomy closure. RESULTS: Of the 729 patients who underwent ORIF of their tibial plateau fracture, 143 (19.6%) subsequently developed a FRI requiring operative treatment. Patients sustaining infections were: 21.0% of those with ORIF before (43 of 205), 15.9% at the same time as (37 of 232), and 21.6% after fasciotomy wound closure (63 of 292). ORIF at the same time as fasciotomy closure demonstrated a 91% probability of being superior to before closure (RR, 0.75; 95% CrI, 0.38 to 1.10). ORIF after fasciotomy closure had a lower likelihood (45%) of a superior outcome than before closure (RR, 1.02; 95% CrI; 0.64 to 1.39). CONCLUSION: Data from this multicenter cohort confirms previous reports of a high FRI risk in patients with a tibial plateau fracture and ipsilateral compartment syndrome. Our results suggest that ORIF at the time of fasciotomy closure has the highest probability of treatment benefit, but that infection was common with all three timings of ORIF in this difficult clinical situation
    corecore