8 research outputs found

    Spherical particles of halophilic archaea correlate with exposure to low water activity - implications for microbial survival in fluid inclusions of ancient halite.

    Get PDF
    Viable extremely halophilic archaea (haloarchaea) have been isolated from million-year-old salt deposits around the world; however, an explanation of their supposed longevity remains a fundamental challenge. Recently small roundish particles in fluid inclusions of 22 000- to 34 000-year-old halite were identified as haloarchaea capable of proliferation (Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA, 2010, Environmental Microbiology, 12, 440454). Searching for a method to produce such particles in the laboratory, we exposed rod-shaped cells of Halobacterium species to reduced external water activity (aw). Gradual formation of spheres of about 0.4 mu m diameter occurred in 4 m NaCl buffer of aw = 0.75, but exposure to buffered 4 m LiCl (aw = 0.73) split cells into spheres within seconds, with concomitant release of several proteins. From one rod, three or four spheres emerged, which re-grew to normal rods in nutrient media. Biochemical properties of rods and spheres were similar, except for a markedly reduced ATP content (about 50-fold) and an increased lag phase of spheres, as is known from dormant bacteria. The presence of viable particles of similar sizes in ancient fluid inclusions suggested that spheres might represent dormant states of haloarchaea. The easy production of spheres by lowering aw should facilitate their investigation and could help to understand the mechanisms for microbial survival over geological times

    Ausgezeichnet! Tanja Gabriele Baudson erhält den Scilogs-Preis 2016.

    Get PDF
    Halococcus salifodinae BIpT DSM 8989T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl), whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing hypotheses on prokaryotic evolution, such as the molecular clock concept, or the net-like history of genome evolution. A comparison of available taxonomic characteristics from strains of Hcc. salifodinae and other Halococcus species, most of them originating from surface waters, is pr esented. The cell wall polymer of Hcc. salifodinae was examined and found to be a heteropolysaccharide, similar to that of Hcc. morrhuae. Polyhydroxyalkanoate granules were present in Hcc. salifodinae, suggesting a possible lateral gene transfer before Permian times

    Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H

    No full text
    corecore