2,073 research outputs found

    The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    Full text link
    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and near infrared photons could be converted to excitations with efficiencies that may exceed 90%. This may provide opportunities for future photodetectors and we discuss possible setups.Comment: 14 pages, 14 figure

    Long Distance Entanglement Generation in 2D Networks

    Full text link
    We consider 2D networks composed of nodes initially linked by two-qubit mixed states. In these networks we develop a global error correction scheme that can generate distance-independent entanglement from arbitrary network geometries using rank two states. By using this method and combining it with the concept of percolation we also show that the generation of long distance entanglement is possible with rank three states. Entanglement percolation and global error correction have different advantages depending on the given situation. To reveal the trade-off between them we consider their application on networks containing pure states. In doing so we find a range of pure-state schemes, each of which has applications in particular circumstances: For instance, we can identify a protocol for creating perfect entanglement between two distant nodes. However, this protocol can not generate a singlet between any two nodes. On the other hand, we can also construct schemes for creating entanglement between any nodes, but the corresponding entanglement fidelity is lower.Comment: 10 pages, 9 figures, 1 tabl

    Singlet Generation in Mixed State Quantum Networks

    Full text link
    We study the generation of singlets in quantum networks with nodes initially sharing a finite number of partially entangled bipartite mixed states. We prove that singlets between arbitrary nodes in such networks can be created if and only if the initial states connecting the nodes have a particular form. We then generalize the method of entanglement percolation, previously developed for pure states, to mixed states of this form. As part of this, we find and compare different distillation protocols necessary to convert groups of mixed states shared between neighboring nodes of the network into singlets. In addition, we discuss protocols that only rely on local rules for the efficient connection of two remote nodes in the network via entanglement swapping. Further improvements of the success probability of singlet generation are developed by using particular forms of `quantum preprocessing' on the network. This includes generalized forms of entanglement swapping and we show how such strategies can be embedded in regular and hierarchical quantum networks.Comment: 17 pages, 21 figure

    Fast initialization of a high-fidelity quantum register using optical superlattices

    Get PDF
    We propose a method for the fast generation of a quantum register of addressable qubits consisting of ultracold atoms stored in an optical lattice. Starting with a half filled lattice we remove every second lattice barrier by adiabatically switching on a superlattice potential which leads to a long wavelength lattice in the Mott insulator state with unit filling. The larger periodicity of the resulting lattice could make individual addressing of the atoms via an external laser feasible. We develop a Bose-Hubbard-like model for describing the dynamics of cold atoms in a lattice when doubling the lattice periodicity via the addition of a superlattice potential. The dynamics of the transition from a half filled to a commensurately filled lattice is analyzed numerically with the help of the Time Evolving Block Decimation algorithm and analytically using the Kibble-Zurek theory. We show that the time scale for the whole process, i.e. creating the half filled lattice and subsequent doubling of the lattice periodicity, is significantly faster than adiabatic direct quantum freezing of a superfluid into a Mott insulator for large lattice periods. Our method therefore provides a high fidelity quantum register of addressable qubits on a fast time scale.Comment: 22 pages, 9 figures, IOP style. Revised version to appear in NJ

    Dissipative quantum light field engineering

    Full text link
    We put forward a dissipative preparation scheme for strongly correlated photon states. Our approach is based on a two-photon loss mechanism that is realised via a single four-level atom inside a bimodal optical cavity. Each elementary two-photon emission event removes one photon out of each of the two modes. The dark states of this loss mechanism are given by NOON states and arbitrary superpositions thereof. We find that the steady state of the two cavity modes exhibits entanglement and for certain parameters, a mixture of two coherent entangled states is produced. We discuss how the quantum correlations in the cavity modes and the output fields can be measured.Comment: 11 pages, 5 figure

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&
    corecore