1,862 research outputs found
Resolving velocity space dynamics in continuum gyrokinetics
Many plasmas of interest to the astrophysical and fusion communities are
weakly collisional. In such plasmas, small scales can develop in the
distribution of particle velocities, potentially affecting observable
quantities such as turbulent fluxes. Consequently, it is necessary to monitor
velocity space resolution in gyrokinetic simulations. In this paper, we present
a set of computationally efficient diagnostics for measuring velocity space
resolution in gyrokinetic simulations and apply them to a range of plasma
physics phenomena using the continuum gyrokinetic code GS2. For the cases
considered here, it is found that the use of a collisionality at or below
experimental values allows for the resolution of plasma dynamics with
relatively few velocity space grid points. Additionally, we describe
implementation of an adaptive collision frequency which can be used to improve
velocity space resolution in the collisionless regime, where results are
expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma
Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence
A scaling theory of long-wavelength electrostatic turbulence in a magnetised,
weakly collisional plasma (e.g., ITG turbulence) is proposed, with account
taken both of the nonlinear advection of the perturbed particle distribution by
fluctuating ExB flows and of its phase mixing, which is caused by the streaming
of the particles along the mean magnetic field and, in a linear problem, would
lead to Landau damping. It is found that it is possible to construct a
consistent theory in which very little free energy leaks into high velocity
moments of the distribution function, rendering the turbulent cascade in the
energetically relevant part of the wave-number space essentially fluid-like.
The velocity-space spectra of free energy expressed in terms of Hermite-moment
orders are steep power laws and so the free-energy content of the phase space
does not diverge at infinitesimal collisionality (while it does for a linear
problem); collisional heating due to long-wavelength perturbations vanishes in
this limit (also in contrast with the linear problem, in which it occurs at the
finite rate equal to the Landau-damping rate). The ability of the free energy
to stay in the low velocity moments of the distribution function is facilitated
by the "anti-phase-mixing" effect, whose presence in the nonlinear system is
due to the stochastic version of the plasma echo (the advecting velocity
couples the phase-mixing and anti-phase-mixing perturbations). The partitioning
of the wave-number space between the (energetically dominant) region where this
is the case and the region where linear phase mixing wins its competition with
nonlinear advection is governed by the "critical balance" between linear and
nonlinear timescales (which for high Hermite moments splits into two
thresholds, one demarcating the wave-number region where phase mixing
predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published
in JP
Correlated and zonal errors of global astrometric missions: a spherical harmonic solution
We propose a computer-efficient and accurate method of estimation of
spatially correlated errors in astrometric positions, parallaxes and proper
motions obtained by space and ground-based astrometry missions. In our method,
the simulated observational equations are set up and solved for the
coefficients of scalar and vector spherical harmonics representing the output
errors, rather than for individual objects in the output catalog. Both
accidental and systematic correlated errors of astrometric parameters can be
accurately estimated. The method is demonstrated on the example of the JMAPS
mission, but can be used for other projects of space astrometry, such as SIM or
JASMINE.Comment: Accepted by AJ, to be published in 201
- …