2 research outputs found

    Electrochemical Switching of Photoelectrochemical Processes at CdS QDs and Photosystem I‑Modified Electrodes

    No full text
    Photoactive inorganic CdS quantum dots (QDs) or the native photosystem I (PSI) is immobilized onto a pyrroloquinoline quinone (PQQ) monolayer linked to Au electrodes to yield hybrid relay/QDs (or photosystem) assemblies. By the electrochemical biasing of the electrode potential, the relay units are retained in their oxidized PQQ or reduced PQQH<sub>2</sub> states. The oxidized or reduced states of the relay units dictate the direction of the photocurrent (anodic or cathodic). By the cyclic biasing of the electrode potential between the values <i>E </i>≥ −0.05 V and <i>E</i> ≤ −0.3 V <i>vs</i> Ag quasi-reference electrode (Ag QRE), retaining the relay units in the oxidized PQQ or reduced PQQH<sub>2</sub> states, the photocurrents are respectively switched between anodic and cathodic values. Different configurations of electrically switchable photoelectrochemical systems are described: (i) the PQQ/CdS QDs/(triethanolamine, TEOA) or PQQ/PSI/(ascorbic acid/dichlorophenolindophenol, DCPIP) systems, leading to anodic photocurrents; (ii) the PQQ/CdS QDs (or PSI)/(flavin adenine dinucleotide) systems, leading to cathodic photocurrents; (iii) the PQQ/CdS QDs (or PSI)/(O<sub>2</sub>) switchable systems, leading to cyclic anodic/cathodic switching of the photocurrents

    Nutrient-Deprivation Autophagy Factor-1 (NAF-1): Biochemical Properties of a Novel Cellular Target for Anti-Diabetic Drugs

    Get PDF
    <div><p>Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed <i>in vitro</i> by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1's ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.</p></div
    corecore