2 research outputs found

    Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH<sub>3</sub>NH<sub>3</sub>)PbI<sub>3</sub> Films

    No full text
    Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH<sub>3</sub>NH<sub>3</sub>]Ā­PbI<sub>3</sub>(Cl) (ā€œperovskiteā€) films <i>in vacuo</i>, and in N<sub>2</sub>, air, and O<sub>2</sub>, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance <i>in vacuo</i> or post<i>-vacuo</i> N<sub>2</sub> exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O<sub>2</sub>-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the materialā€™s electrical properties and electrochemical reactivity, which can also affect material stability

    Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications

    No full text
    Hybrid organic/lead halide perovskites are promising materials for solar cell fabrication, resulting in efficiencies up to 18%. The most commonly studied perovskites are CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3ā€“<i>x</i></sub>Cl<sub><i>x</i></sub> where <i>x</i> is small. Importantly, in the latter system, the presence of chloride ion source in the starting solutions used for the perovskite deposition results in a strong increase in the overall charge diffusion length. In this work we investigate the crystallization parameters relevant to fabrication of perovskite materials based on CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>. We find that the addition of PbCl<sub>2</sub> to the solutions used in the perovskite synthesis has a remarkable effect on the end product, because PbCl<sub>2</sub> nanocrystals are present during the fabrication process, acting as heterogeneous nucleation sites for the formation of perovskite crystals in solution. We base this conclusion on SEM studies, synthesis of perovskite single crystals, and on cryo-TEM imaging of the frozen mother liquid. Our studies also included the effect of different substrates and substrate temperatures on the perovskite nucleation efficiency. In view of our findings, we optimized the procedures for solar cells based on lead bromide perovskite, resulting in 5.4% efficiency and <i>V</i><sub>oc</sub> of 1.24 V, improving the performance in this class of devices. Insights gained from understanding the hybrid perovskite crystallization process can aid in rational design of the polycrystalline absorber films, leading to their enhanced performance
    corecore