2 research outputs found

    Attributable mortality of antibiotic resistance in Gram-negative infections in the Netherlands: a parallel matched cohort study

    Get PDF
    Abstract Objectives Antibiotic resistance in Gram-negative bacteria has been associated with increased mortality. This was demonstrated mostly for third-generation cephalosporin-resistant (3GC-R) Enterobacterales bacteraemia in international studies. Yet, the burden of resistance specifically in the Netherlands and created by all types of Gram-negative infection has not been quantified. We therefore investigated the attributable mortality of antibiotic resistance in Gram-negative infections in the Netherlands. Methods In eight hospitals, a sample of Gram-negative infections was identified between 2013 and 2016, and separated into resistant and susceptible infection cohorts. Both cohorts were matched 1:1 to non-infected control patients on hospital, length of stay at infection onset, and age. In this parallel matched cohort set-up, 30-day mortality was compared between infected and non-infected patients. The impact of resistance was then assessed by dividing the two separate risk ratios (RRs) for mortality attributable to Gram-negative infection. Results We identified 1,954 Gram-negative infections, of which 1,190 (61%) involved Escherichia coli, 210 (11%) Pseudomonas aeruginosa, and 758 (39%) bacteraemia. Resistant Gram-negatives caused 243 infections (12%; 189 (78%) 3GC-R Enterobacterales, 9 (4%) multidrug-resistant P. aeruginosa, no carbapenemase-producing Enterobacterales). Subsequently, we matched 1,941 non-infected controls. After adjustment, point estimates for RRs comparing mortality between infections and controls were similarly higher than 1 in case of resistant infections and susceptible infections (1.42 (95% confidence interval 0.66-3.09) and 1.32 (1.06-1.65), respectively). By dividing these, the RR reflecting attributable mortality of resistance was calculated as 1.08 (0.48-2.41). Conclusions In the Netherlands, antibiotic resistance did not increase 30-day mortality in Gram-negative infections

    Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands

    Get PDF
    Background.Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized.Methods.All 43,321 isolates from 36,520 persons, collected 2008–2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes.Results.We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008–2010 to 25% in 2017–2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017–2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains.Conclusions.Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA
    corecore