5,381 research outputs found

    Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors - disk and sphere

    Full text link
    The vortex state of mesoscopic three-dimensional superconductors is determined using a minimization procedure of the Ginzburg-Landau free energy. We obtain the vortex pattern for a mesoscopic superconducting sphere and find that vortex lines are naturally bent and are closest to each other at the equatorial plane. For a superconducting disk with finite height, and under an applied magnetic field perpendicular to its major surface, we find that our method gives results consistent with previous calculations. The matching fields, the magnetization and Hc3H_{c3}, are obtained for models that differ according to their boundary properties. A change of the Ginzburg-Landau parameters near the surface can substantially enhance Hc3H_{c3} as shown here.Comment: 7 pages, 4 figures (low resolution

    The Average Kinetic Energy of the Superconducting State

    Full text link
    Isothermal magnetization curves are plotted as the magnetization times the magnetic induction, 4πM⋅B4 \pi M \cdot B, versus the applied field, H. We show here that this new curve is the average kinetic energy of the superconducting state versus the applied field, for type-II superconductors with a high Ginzburg-Landau parameter κ\kappa. The maximum of 4πM⋅B4 \pi M \cdot B occurs at a field, H∗H^{*}, directly related to the upper critical field, Hc2H_{c2}, suggesting that Hc2(T)H_{c2}(T) may be extracted from such plots even in cases when it is too high for direct measurement. We obtain these plots both theoretically, from the Ginzburg-Landau theory, and experimentally, using a Niobium sample with Tc=8.5KT_c = 8.5 K, and compare them.Comment: 11 pages, 9 postscript figure

    Little-Parks oscillations near a persistent current loop

    Full text link
    We investigate the Little-Parks oscillations caused by a persistent current loop set on the top edge of a mesoscopic superconducting thin-walled cylinder with a finite height. For a short cylinder the Little-Parks oscillations are approximately the same ones as the standard effect, as there is only one magnetic flux piercing the cylinder. For a tall cylinder the inhomogeneity of the magnetic field makes different magnetic fluxes pierce the cylinder at distinct heights and we show here that this produces two distinct Little-Parks oscillatory regimes according to the persistent current loop. We show that these two regimes, and also the transition between them, are observable in current measurements done in the superconducting cylinder. The two regimes stem from different behavior along the height, as seen in the order parameter, numerically obtained from the Ginzburg-Landau theory through the finite element methodComment: 13 pages, 12 figure

    Vortex Lines or Vortex-Line Chains at the Lower Critical Field in Anisotropic Superconductors?

    Full text link
    The vortex state at the lower critical field, H_{c1}, in clean anisotropic superconductors placed in an external field tilted with respect to the axis of anisotropy (c-axis) is considered assuming two possible arrangements: dilute vortex-lines or dilute vortex-line chains. By minimizing the Gibbs free energies in the London limit for each possibility we obtain the corresponding lower critical fields as a function of the tilt angle. The equilibrium configuration at H_{c1} for a given tilt angle is identified with that for which H_{c1} is the smallest. We report results for parameter values typical of strong and moderate anisotropy. We find that for strong anisotropy vortex-line chains are favored for small tilt angles (< 7.9^o) and that at 7.9^o there is coexistence between this configuration and a vortex-line one. For moderate anisotropy we find that there is little difference between the vortex-line and the vortex-chain lower critical fields.Comment: 5 pages, 4 figures, accepted to appear on Physica

    Implications of Screen Use in Young Children\u27s Occupations

    Get PDF
    Introduction: OTs need to address both the duration and quality of screen media children use, to promote their development and participation in healthy occupations

    Three-dimensional Ginzburg-Landau simulation of a vortex line displaced by a zigzag of pinning spheres

    Full text link
    A vortex line is shaped by a zigzag of pinning centers and we study here how far the stretched vortex line is able to follow this path. The pinning center is described by an insulating sphere of coherence length size such that in its surface the de Gennes boundary condition applies. We calculate the free energy density of this system in the framework of the Ginzburg-Landau theory and study the critical displacement beyond which the vortex line is detached from the pinning center.Comment: Submitted to special issue of Prammna-Journal of Physics devoted to the Vortex State Studie
    • …
    corecore