2,784 research outputs found

    Chaotic Scattering Theory of Transport and Reaction-Rate Coefficients

    Full text link
    The chaotic scattering theory is here extended to obtain escape-rate expressions for the transport coefficients appropriate for a simple classical fluid, or for a chemically reacting system. This theory allows various transport coefficients such as the coefficients of viscosity, thermal conductivity, etc., to be expressed in terms of the positive Lyapunov exponents and Kolmogorov-Sinai entropy of a set of phase space trajectories that take place on an appropriate fractal repeller. This work generalizes the previous results of Gaspard and Nicolis for the coefficient of diffusion of a particle moving in a fixed array of scatterers.Comment: 27 pages LaTeX, no figure

    Fractal Dimensions of the Hydrodynamic Modes of Diffusion

    Full text link
    We consider the time-dependent statistical distributions of diffusive processes in relaxation to a stationary state for simple, two dimensional chaotic models based upon random walks on a line. We show that the cumulative functions of the hydrodynamic modes of diffusion form fractal curves in the complex plane, with a Hausdorff dimension larger than one. In the limit of vanishing wavenumber, we derive a simple expression of the diffusion coefficient in terms of this Hausdorff dimension and the positive Lyapunov exponent of the chaotic model.Comment: 20 pages, 6 figures, submitted to Nonlinearit

    Time-resolved broadband Raman spectroscopies; A unified six-wave-mixing representation

    Full text link
    Excited-state vibrational dynamics in molecules can be studied by an electronically off-resonant Raman process induced by a probe pulse with variable delay with respect to an actinic pulse. We establish the connection between several variants of the technique that involve either spontaneous or stimulated Raman detection and different pulse configurations. By using loop diagrams in the frequency domain we show that all signals can be described as six wave mixing which depend on the same four point molecular correlation functions involving two transition dipoles and two polarizabilities and accompanied by a different gating. Simulations for the stochastic two-state-jump model illustrate the origin of the absorptive and dispersive features observed experimentally

    Broadband infrared and Raman probes of excited-state vibrational molecular dynamics; Simulation protocols based on loop diagram

    Full text link
    Vibrational motions in electronically excited states can be observed by either time and frequency resolved infrared absorption or by off resonant stimulated Raman techniques. Multipoint correlation function expressions are derived for both signals. Three representations for the signal which suggest different simulation protocols are developed. These are based on the forward and the backward propagation of the wavefunction, sum over state expansion using an effective vibration Hamiltonian and a semiclassical treatment of a bath. We show that the effective temporal (Δt\Delta t) and spectral (Δω\Delta\omega) resolution of the techniques is not controlled solely by experimental knobs but also depends on the system dynamics being probed. The Fourier uncertainty ΔωΔt>1\Delta\omega\Delta t>1 is never violated

    The Fractality of the Hydrodynamic Modes of Diffusion

    Full text link
    Transport by normal diffusion can be decomposed into the so-called hydrodynamic modes which relax exponentially toward the equilibrium state. In chaotic systems with two degrees of freedom, the fine scale structure of these hydrodynamic modes is singular and fractal. We characterize them by their Hausdorff dimension which is given in terms of Ruelle's topological pressure. For long-wavelength modes, we derive a striking relation between the Hausdorff dimension, the diffusion coefficient, and the positive Lyapunov exponent of the system. This relation is tested numerically on two chaotic systems exhibiting diffusion, both periodic Lorentz gases, one with hard repulsive forces, the other with attractive, Yukawa forces. The agreement of the data with the theory is excellent

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems

    Full text link
    We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently introduced extended Boltzmann equation for the nonequilibrium distribution of the radius of curvature matrix and the solution of the standard Boltzmann equation. The escape-rate formalism then gives an explicit result for the Kolmogorov Sinai entropy on the repeller.Comment: submitted to Phys Rev

    Ergodicity Breaking in a Deterministic Dynamical System

    Full text link
    The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a weakly chaotic dynamical system: a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.Comment: 11 pages, 4 figure

    Time-oscillating Lyapunov modes and auto-correlation functions for quasi-one-dimensional systems

    Full text link
    The time-dependent structure of the Lyapunov vectors corresponding to the steps of Lyapunov spectra and their basis set representation are discussed for a quasi-one-dimensional many-hard-disk systems. Time-oscillating behavior is observed in two types of Lyapunov modes, one associated with the time translational invariance and another with the spatial translational invariance, and their phase relation is specified. It is shown that the longest period of the Lyapunov modes is twice as long as the period of the longitudinal momentum auto-correlation function. A simple explanation for this relation is proposed. This result gives the first quantitative connection between the Lyapunov modes and an experimentally accessible quantity.Comment: 4 pages, 3 figure

    Capturing correlations in chaotic diffusion by approximation methods

    Full text link
    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line which contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, whilst the third method approximates Markov partitions and transition matrices by using the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in case of dynamics where exact results for the diffusion coefficient are not available.Comment: 11 pages, 5 figure

    Chaotic properties of systems with Markov dynamics

    Full text link
    We present a general approach for computing the dynamic partition function of a continuous-time Markov process. The Ruelle topological pressure is identified with the large deviation function of a physical observable. We construct for the first time a corresponding finite Kolmogorov-Sinai entropy for these processes. Then, as an example, the latter is computed for a symmetric exclusion process. We further present the first exact calculation of the topological pressure for an N-body stochastic interacting system, namely an infinite-range Ising model endowed with spin-flip dynamics. Expressions for the Kolmogorov-Sinai and the topological entropies follow.Comment: 4 pages, to appear in the Physical Review Letter
    • …
    corecore