42 research outputs found

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation

    Phylogeny of the Gall Midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, Evolution of Feeding Modes and Diversification Rates

    No full text
    Gall midges (Cecidomyiidae) constitute one of the largest and most diverse families of Diptera, with close to 6600 described species and thousands of undescribed species worldwide. The family is divided into six subfamilies, the five basal ones comprising only fungivorous taxa, whereas the largest, youngest and most diverse subfamily Cecidomyiinae includes fungivorous as well as herbivorous and predatory species. The currently accepted classification of the Cecidomyiinae is morphology-based, and the few phylogenetic inferences that have previously been suggested for it were based on fragmentary or limited datasets. In a first comprehensive phylogenetic analysis of the Cecidomyiinae we sampled 142 species representing 88 genera of 13 tribes from all feeding guilds and zoogeographic regions in order to test the validity of the systematic division of the subfamily and gain insight into patterns of diversification and the evolution of feeding modes. We used sequences from five mitochondrial and nuclear genes to reconstruct maximum likelihood and Bayesian, time-calibrated phylogenies and conducted ancestral state reconstruction of feeding modes. Our results corroborate to a great extent the morphology-based classification of the Cecidomyiinae, with strong support for all supertribes and tribes, all were apparently established in the Upper Cretaceous concordant with the major radiation of angiosperms. We infer that transitions from fungus-feeding to plant-feeding occurred only once or twice in the evolution of the subfamily and that predation evolved only once, contrary to previous hypotheses. All herbivorous clades in the subfamily are very species rich and have diversified at a significantly greater rate than expected, but we found no support for the assertion that herbivorous clades associated with symbiotic fungi in their galls diversify faster than clades that do not have such associations. Currently available data also do not support the hypothesis that symbiotic clades have broader host ranges than non-symbiotic clades

    Phylogeny of the Gall Midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, Evolution of Feeding Modes and Diversification Rates

    No full text
    Gall midges (Cecidomyiidae) constitute one of the largest and most diverse families of Diptera, with close to 6600 described species and thousands of undescribed species worldwide. The family is divided into six subfamilies, the five basal ones comprising only fungivorous taxa, whereas the largest, youngest and most diverse subfamily Cecidomyiinae includes fungivorous as well as herbivorous and predatory species. The currently accepted classification of the Cecidomyiinae is morphology-based, and the few phylogenetic inferences that have previously been suggested for it were based on fragmentary or limited datasets. In a first comprehensive phylogenetic analysis of the Cecidomyiinae we sampled 142 species representing 88 genera of 13 tribes from all feeding guilds and zoogeographic regions in order to test the validity of the systematic division of the subfamily and gain insight into patterns of diversification and the evolution of feeding modes. We used sequences from five mitochondrial and nuclear genes to reconstruct maximum likelihood and Bayesian, time-calibrated phylogenies and conducted ancestral state reconstruction of feeding modes. Our results corroborate to a great extent the morphology-based classification of the Cecidomyiinae, with strong support for all supertribes and tribes, all were apparently established in the Upper Cretaceous concordant with the major radiation of angiosperms. We infer that transitions from fungus-feeding to plant-feeding occurred only once or twice in the evolution of the subfamily and that predation evolved only once, contrary to previous hypotheses. All herbivorous clades in the subfamily are very species rich and have diversified at a significantly greater rate than expected, but we found no support for the assertion that herbivorous clades associated with symbiotic fungi in their galls diversify faster than clades that do not have such associations. Currently available data also do not support the hypothesis that symbiotic clades have broader host ranges than non-symbiotic clades

    Morphological and Molecular Revision of the Genus Ozirhincus (Diptera: Cecidomyiidae)—Long-Snouted Seed-Feeding Gall Midges on Asteraceae

    No full text
    The Palaearctic gall-midge genus Ozirhincus is unique among the Cecidomyiidae for its morphology and biology. Unlike most other phytophagous gall midges, species in this genus do not induce galls but develop inside achenes of Asteraceae plants. The heads of adults are characterized by an unusually elongate proboscis, the function of which is unclear. Despite a lot of attention from taxonomists in the 19th and early 20th century, a proper revision of the genus has been hindered by complex host associations, the loss of most relevant type material, and the lack of a thorough comparative study of all life stages. The present revision integrated morphological, molecular, and life-history data to clearly define species boundaries within Ozirhincus, and delimit host-plant ranges for each of them. A phylogenetic analysis based on the mitochondrial COI and 16S genes confirmed the validity of four distinct species but did not resolve the relationships among them. All species are oligophages, and some may occur together on the same host plant. Species with wider host-plant ranges have wider European and circum-Mediterranean distribution ranges, whereas species with narrower host ranges are limited to Europe and the Russian Far East. As part of the present work, O. hungaricus is reinstated from synonymy, O. tanaceti is synonymized under O. longicollis, neotypes are designated for O. longicollis and O. millefolii, and a lectotype is designated for O. anthemidis

    <i>Ozirhincus hungaricus</i>.

    No full text
    <p>a-c. Female on <i>Tanacetum vulgare</i> inflorescence (photos: Hedy Jansen); d. <i>Tanacetum vulgare</i> flowers containing <i>O</i>. <i>hungaricus</i> larvae (upper row), and normal flowers (lower row).</p

    Pupae heads.

    No full text
    <p>a. <i>Ozirhincus anthemidis</i>, frontal; b. <i>O</i>. <i>anthemidis</i>, lateral; c. <i>O</i>. <i>hungaricus</i>, frontal; c. <i>O</i>. <i>hungaricus</i>, lateral; e. <i>O</i>. <i>longicollis</i>, frontal; f. <i>O</i>. <i>millefolii</i>, frontal.</p

    Phylogenetic tree of <i>Ozirhincus</i> Rondani based on Bayesian analysis of partial sequence of the cytochrome oxidase subunit I (COI) and ribosomal RNA16S mitochondrial genes.

    No full text
    <p>Support values are shown next to nodes, above branches. Character states representing proboscis length as suggested by the ancestral states analysis are shown below branches (in square brackets). Letters and numbers following species name refer to collecting localities and dates (details in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0130981#pone.0130981.t002" target="_blank">Table 2</a>). Colors correspond to host-plant genera.</p
    corecore