4 research outputs found
Biomarkers of tumor-reactive CD4+ and CD8+ TILs associate with improved prognosis in endometrial cancer
Background: Despite the growing interest in immunotherapeutic interventions for endometrial cancer (EC), the prevalence, phenotype, specificity and prognostic value of tumor infiltrating lymphocytes (TILs) in this tumor type remains unclear. Methods: To better understand the role of TILs in EC, we analyzed the phenotypic traits of CD8+ and CD4+ EC-resident T cells from 47 primary tumors by high-dimensional flow cytometry. In addition, CD8+ and CD4+ TIL subpopulations were isolated based on the differential expression of programmed cell death protein-1 (PD-1) (negative, dim and high) and CD39 (positive or negative) by fluorescence activated cell sorting (FACS), expanded in vitro, and screened for autologous tumor recognition. We further investigated whether phenotypic markers preferentially expressed on CD8+ and CD4+ tumor-reactive TIL subsets were associated with the four distinct molecular subtypes of EC, tumor mutational burden and patient survival. Results: We found that CD8+TILs expressing high levels of PD-1 (PD-1hi) co-expressed CD39, TIM-3, HLA-DR and CXCL13, as compared with TILs lacking or displaying intermediate levels of PD-1 expression (PD-1- and PD-1dim, respectively). Autologous tumor reactivity of sorted and in vitro expanded CD8+ TILs demonstrated that the CD8+PD-1dimCD39+ and PD-1hiCD39+ T cell subsets both contained tumor-reactive TILs and that a higher level of PD-1 expression was associated with increased CD39 and a superior frequency of tumor reactivity. With respect to CD4+ T conventional (Tconv) TILs, co-expression of inhibitory and activation markers was more apparent on PD-1hi compared with PD-1- or PD-1dim T cells, and in fact, it was the CD4+PD-1hi subpopulation that accumulated the antitumor T cells irrespective of CD39 expression. Most importantly, detection of CD8+PD-1hiCD39+ and CD4+PD-1hi tumor-reactive T-cell subsets, but also markers specifically expressed by these subpopulations of TILs, that is, PD-1hi, CD39, CXCL13 and CD103 by CD8+ TILs and PD-1hi and CXCL13 by CD4+ Tconv TILs, correlated with prolonged survival of patients with EC. Conclusions: Our results demonstrate that EC are frequently infiltrated by tumor-reactive TILs, and that expression of PD-1hi and CD39 or PD-1hi can be used to select and expand CD8+ and CD4+ tumor-reactive TILs, respectively. In addition, biomarkers preferentially expressed on tumor-reactive TILs, rather than the frequency of CD3+, CD8+ and CD4+ lymphocytes, hold prognostic value suggesting their protective role in antitumor immunity
Highly sensitive microsatellite instability and immunohistochemistry assessment in endometrial aspirates as a tool for cancer risk individualization in Lynch syndrome
Women with Lynch syndrome (LS) are at increased risk of endometrial cancer (EC), among other tumors, and are characterized by mismatch repair (MMR) deficiency and microsatellite instability (MSI). While risk-reducing gynecologic surgeries effectively decrease EC incidence, doubts arise regarding the appropriate timing of the surgery. We explored the usefulness of highly sensitive MSI (hs-MSI) assessment in endometrial aspirates for individualizing gynecologic surveillance in LS carriers. Ninety-three women with LS, 25 sporadic EC patients (9 MMR-proficient and 16 MMR-deficient), and 30 women with benign gynecologic disease were included in this study. hs-MSI was assessed in prospectively collected endometrial aspirates in 67 LS carriers, EC cases, and controls. MMR, PTEN, ARID1A, and PAX2 protein expression patterns were evaluated in the LS samples. Follow-up aspirates from 8 LS carriers were also analyzed. Elevated hs-MSI scores were detected in all aspirates from MMR-deficient EC cases (3 LS and 16 sporadic) and negative in aspirates from controls and MMR-proficient EC cases. Positive hs-MSI scores were also detected in all 4 LS aspirates reported as complex hyperplasia. High hs-MSI was also present in 10 of 49 aspirates (20%) from LS carriers presenting a morphologically normal endometrium, where MMR protein expression loss was detected in 69% of the samples. Interestingly, the hs-MSI score was positively correlated with MMR-deficient gland density and the presence of MMR-deficient clusters, colocalizing PTEN and ARID1A expression loss. High hs-MSI scores and clonality were evidenced in 2 samples collected up to 4 months before EC diagnosis; hs-MSI scores increased over time in 5 LS carriers, whereas they decreased in a patient with endometrial hyperplasia after progestin therapy. In LS carriers, elevated hs-MSI scores were detected in aspirates from premalignant and malignant lesions and normal endometrium, correlating with MMR protein loss. hs-MSI assessment and MMR immunohistochemistry may help individualize EC risk assessment in women with LS
Evaluation of somatic mutations in cervicovaginal samples as a non-invasive method for the detection and molecular classification of endometrial cancer
Background The incidence of endometrial cancer is increasing worldwide. While delays in diagnosis reduce survival, case molecular misclassification might be associated with under- and over-treatment. The objective of this study was to evaluate genetic alterations to detect and molecularly classify cases of endometrial cancer using non-invasive samples. Methods Consecutive patients with incident endometrial cancer (N = 139) and controls (N = 107) from a recent Spanish case–control study were included in this analysis. Overall, 339 cervicovaginal samples (out of which 228 were clinician-collected and 111 were self-collected) were analysed using a test based on next-generation sequencing (NGS), which targets 47 genes. Immunohistochemical markers were evaluated in 133 tumour samples. A total of 159 samples were used to train the detection algorithm and 180 samples were used for validation. Findings Overall, 73% (N = 94 out of 129 clinician-collected samples, and N = 66 out of 90 self-collected samples) of endometrial cancer cases had detectable mutations in clinician-collected and self-collected samples, while the specificity was 80% (79/99) for clinician-collected samples and 90% (19/21) for self-collected samples. The molecular classifications obtained using tumour samples and non-invasive gynaecologic samples in our study showed moderate-to-good agreement. The molecular classification of cases of endometrial cancer into four groups using NGS of both clinician-collected and self-collected cervicovaginal samples yielded significant differences in disease-free survival. The cases with mutations in POLE had an excellent prognosis, whereas the cases with TP53 mutations had the poorest clinical outcome, which is consistent with the data on tumour samples. Interpretation This study classified endometrial cancer cases into four molecular groups based on the analysis of cervicovaginal samples that showed significant differences in disease-free survival. The molecular classification of endometrial cancer in non-invasive samples may improve patient care and survival by indicating the early need for aggressive surgery, as well as reducing referrals to highly specialized hospitals in cancers with good prognosis. Validation in independent sets will confirm the potential for molecular classification in non-invasive samples. Funding This study was funded by a competitive grant from Instituto de Salud Carlos III through the projects PI19/01835, PI23/00790, and FI20/00031, CIBERESP CB06/02/0073 and CIBERONC CB16/12/00231, CB16/12/00234 (Co-funded by European Regional Development Fund. ERDF: A way to build Europe). Samples and data were provided by Biobank HUB-ICO-IDIBELL, integrated into the Spanish Biobank Network, and funded by the Instituto de Salud Carlos III (PT20/00171) and by Xarxa de Bancs de Tumors de Catalunya (XBTC) sponsored by Pla Director d’Oncologia de Catalunya. This work was supported in part by the AECC, Grupos estables (GCTRA18014MATI). It also counts with the support of the Secretariat for Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya, and grants to support the activities of research groups 2021SGR01354 and 2021SGR1112
Radio-histological correlation of lung features in severe COVID19
Background: Patients with coronavirus disease 2019 (COVID-19) can develop severe bilateral pneumonia leading to respiratory failure. Lung histological samples were scarce due to the high risk of contamination during autopsies. We aimed to correlate histological COVID-19 features with radiological findings through lung ultrasound (LU)-guided postmortem core needle biopsies (CNBs) and computerized tomography (CT) scans. Methodology: We performed an observational prospective study, including 30 consecutive patients with severe COVID-19. The thorax was divided into 12 explorations regions to correlate LU and CT-scan features. Histological findings were also related to radiological features through CNBs. Results: Mean age was 62.56 ± 13.27 years old, with 96.7% male patients. Postmortem LU-guided CNBs were performed in 13 patients. Thirty patients were evaluated with both thoracic LU and chest CT scan, representing a total of 279 thoracic regions explored. The most frequent LU finding was B2-lines (49.1%). The most CT-scan finding was ground-glass opacity (GGO, 29%). Pathological CT-scan findings were commonly observed when B2-lines or C-lines were identified through LU (positive predictive value, PPV, 87.1%). Twenty-five postmortem echo-guided histological samples were obtained from 12 patients. Histological samples showed diffuse alveolar damage (DAD) (75%) and chronic interstitial inflammation (25%). The observed DAD was heterogeneous, showing multiple evolving patterns of damage, including exudative (33.3%), fibrotic (33.3%), and organizing (8.3%) phases. In those patients with acute or exudative pattern, two lesions were distinguished: classic hyaline membrane; fibrin "plug" in alveolar space (acute fibrinous organizing pneumonia, AFOP). C-profile was described in 33.3% and presented histological signs of DAD and lung fibrosis. The predominant findings were collagen deposition (50%) and AFOP (50%). B2-lines were identified in 66.7%; the presence of hyaline membrane was the predominant finding (37.5%), then organizing pneumonia (12.5%) and fibrosis (37.5%). No A-lines or B1-lines were observed in these patients. Conclusion: LU B2-lines and C-profile are predominantly identified in patients with severe COVID-19 with respiratory worsening, which correspond to different CT patterns and histological findings of DAD and lung fibrosis