20 research outputs found

    Засоби масової комунікації в культурі суспільства постмодерну

    Get PDF
    Проаналізовано місце, роль та вплив засобів масової комунікації на суспільство й індивіда в умовах інформаційного суспільства.Проанализировано место, роль и влияние средств массовой коммуникации на общество и индивида в условиях информационного общества.A place, role and influencing of facilities of mass communication, is analized on society and individual in the conditions of informative societ

    Metal ions and redox balance regulate distinct amyloid-like aggregation pathways of GAPR-1

    No full text
    Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-Related 1 proteins) are characterized by the presence of a structurally conserved CAP domain. The common structure-function relationship of this domain is still poorly understood. In this study, we unravel specific molecular mechanisms modulating the quaternary structure of the mammalian CAP protein GAPR-1 (Golgi-Associated plant Pathogenesis-Related protein 1). Copper ions are shown to induce a distinct amyloid-like aggregation pathway of GAPR-1 in the presence of heparin. This involves an immediate shift from native multimers to monomers which are prone to form amyloid-like fibrils. The Cu2+-induced aggregation pathway is independent of a conserved metal-binding site and involves the formation of disulfide bonds during the nucleation process. The elongation process occurs independently of the presence of Cu2+ ions, and amyloid-like aggregation can proceed under oxidative conditions. In contrast, the Zn2+-dependent aggregation pathway was found to be independent of cysteines and was reversible upon removal of Zn2+ ions. Together, our results provide insight into the regulation of the quaternary structure of GAPR-1 by metal ions and redox homeostasis with potential implications for regulatory mechanisms of other CAP proteins

    The less conserved metal-binding site in human CRISP1 remains sensitive to zinc ions to permit protein oligomerization

    Get PDF
    Cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and PR-1 (CAP) superfamily that is characterized by the presence of a conserved CAP domain. Two conserved histidines in the CAP domain are proposed to function as a Zn2+-binding site with unknown function. Human CRISP1 is, however, one of the few family members that lack one of these characteristic histidine residues. The Zn2+-dependent oligomerization properties of human CRISP1 were investigated using a maltose-binding protein (MBP)-tagging approach in combination with low expression levels in XL-1 Blue bacteria. Moderate yields of soluble recombinant MBP-tagged human CRISP1 (MBP-CRISP1) and the MBP-tagged CAP domain of CRISP1 (MBP-CRISP1ΔC) were obtained. Zn2+ specifically induced oligomerization of both MBP-CRISP1 and MBP-CRISP1ΔC in vitro. The conserved His142 in the CAP domain was essential for this Zn2+ dependent oligomerization process, confirming a role of the CAP metal-binding site in the interaction with Zn2+. Furthermore, MBP-CRISP1 and MBP-CRISP1ΔC oligomers dissociated into monomers upon Zn2+ removal by EDTA. Condensation of proteins is characteristic for maturing sperm in the epididymis and this process was previously found to be Zn2+-dependent. The Zn2+-induced oligomerization of human recombinant CRISP1 may shed novel insights into the formation of functional protein complexes involved in mammalian fertilization

    Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins

    Get PDF
    The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases

    Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins

    No full text
    The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases

    Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae

    No full text
    Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid-liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members

    Zinc binding regulates amyloid-like aggregation of GAPR-1

    No full text
    Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure-function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103 Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain

    Zinc binding regulates amyloid-like aggregation of GAPR-1

    No full text
    Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure-function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103 Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain
    corecore