25 research outputs found

    Whole genome survey of coding SNPs reveals a reproducible pathway determinant of Parkinson disease

    Get PDF
    It is quickly becoming apparent that situating human variation in a pathway context is crucial to understanding its phenotypic significance. Toward this end, we have developed a general method for finding pathways associated with traits that control for pathway size. We have applied this method to a new whole genome survey of coding SNP variation in 187 patients afflicted with Parkinson disease (PD) and 187 controls. We show that our dataset provides an independent replication of the axon guidance association recently reported by Lesnick et al. [PLoS Genet 2007;3:e98], and also indicates that variation in the ubiquitin-mediated proteolysis and T-cell receptor signaling pathways may predict PD susceptibility. Given this result, it is reasonable to hypothesize that pathway associations are more replicable than individual SNP associations in whole genome association studies. However, this hypothesis is complicated by a detailed comparison of our dataset to the second recent PD association study by Fung et al. [Lancet Neurol 2006;5:911โ€“916]. Surprisingly, we find that the axon guidance pathway does not rank at the very top of the Fung dataset after controlling for pathway size. More generally, in comparing the studies, we find that SNP frequencies replicate well despite technologically different assays, but that both SNP and pathway associations are globally uncorrelated across studies. We thus have a situation in which an association between axon guidance pathway variation and PD has been found in 2 out of 3 studies. We conclude by relating this seeming inconsistency to the molecular heterogeneity of PD, and suggest future analyses that may resolve such discrepancies

    High Throughput Automated Allele Frequency Estimation by Pyrosequencing

    Get PDF
    Pyrosequencing is a DNA sequencing method based on the principle of sequencing-by-synthesis and pyrophosphate detection through a series of enzymatic reactions. This bioluminometric, real-time DNA sequencing technique offers unique applications that are cost-effective and user-friendly. In this study, we have combined a number of methods to develop an accurate, robust and cost efficient method to determine allele frequencies in large populations for association studies. The assay offers the advantage of minimal systemic sampling errors, uses a general biotin amplification approach, and replaces dTTP for dATP-apha-thio to avoid non-uniform higher peaks in order to increase accuracy. We demonstrate that this newly developed assay is a robust, cost-effective, accurate and reproducible approach for large-scale genotyping of DNA pools. We also discuss potential improvements of the software for more accurate allele frequency analysis

    Familial amyloid precursor protein mutants cause caspase-6-dependent but amyloid ฮฒ-peptide-independent neuronal degeneration in primary human neuron cultures.

    Get PDF
    Although familial Alzheimer disease (AD)-associated autosomal dominant mutants have been extensively studied, little is known about the underlying molecular mechanisms of neurodegeneration induced by these mutants in AD. Wild-type, Swedish or London amyloid precursor protein (APP) transfection in primary human neurons induced neuritic beading, in which several co-expressed proteins, such as enhanced green fluorescent protein, red fluorescent protein (RFP)-tau and RFP-ubiquitin, accumulated. APP-induced neuritic beading was dependent on caspase-6 (Casp6), because it was inhibited with 5โ€‰ฮผM z-VEID-fmk or with dominant-negative Casp6. Neuritic beading was independent from APP-mediated amyloid ฮฒ-peptide (Aฮฒ) production, because the APPM596V (APPMV) mutant, which cannot generate Aฮฒ, still induced Casp6-dependent neuritic beading. However, the beaded neurons underwent Casp6- and Aฮฒ-dependent cell death. These results indicate that overexpression of wild-type or mutant APP causes Casp6-dependent but Aฮฒ-independent neuritic degeneration in human neurons. Because Casp6 is activated early in AD and is involved in axonal degeneration, these results suggest that the inhibition of Casp6 may represent an efficient early intervention against familial forms of AD. Furthermore, these results indicate that removing Aฮฒ without inhibiting Casp6 may have little effect in preventing the progressive dementia associated with sporadic or familial AD

    The N-Terminal Domain of the Drosophila Retinoblastoma Protein Rbf1 Interacts with ORC and Associates with Chromatin in an E2F Independent Manner

    Get PDF
    The retinoblastoma (Rb) tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC).We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1-345) is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345-845) interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4.Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6ย years (2010โ€“2015)

    Full text link
    corecore