3 research outputs found

    Epidemiological study on some environmental and management parameters affecting on WSD occurrence in Fenneropenaeus indicus and Penaeus vannamei

    Get PDF
    For the first time white spot disease (WSD) was reported in shrimp farms of khoozestan province, in southwest of IRAN in 2002. Then in 2005 the neighbor province, boushehr, was contaminated. In 2008 WSD outbreak reported in sistan-bloochestan province in southeast of Iran. In 2015 all of southern shrimp farms of country except Hormozgan, the middle southern province, which has remained free of WSD, are being contaminated. White Spot disease suspended shrimp culture in thousands hectares of shrimp farms. Considering that white spot disease has not been observed in Hormozgan province yet, the question is; to what extent environmental and management factors participated in preventing WSD outbreak or cause WSD outbreak. In this study (20102012), the effects of environmental factors and management, stressors that decrease immune system function of shrimp are discussed. In addition, the role of pathogen as the main factor of outbreak is discussed. The goal of this study is to define environmental parameters and management practices associates with outbreak of white spot disease in affected provinces and discover reasons of being Hormozgan province free of this disease. In this study the role of the local environmental factors and management practice stressors in susceptibility to WSD was determine. Both the effects of environmental factors in water of ponds including total ammonia, nitrogen, dissolved oxygen, pH, salinity, transparency, and temperature and management issues related to biosecurity are studied. There were overlaps on physical and chemical parameter values obtained in clear areas with contaminated areas .Results of the data analysis suggest that lack of association with WSD incidence was 7 times greater than WSD incidence despite of disease outbreak in sistan-bloochestan province, so other sources of white spot disease virus incidence was suspected in affected areas. Histopathological examinations and polymerase chain reaction (PCR) tests during project performance did not reveal white spot disease virus evidences in post larvae examined from khoozestan province stocked in farms but disease outbreak was happened in that farms , so we suspected to management practice include feed , pond preparation and carrier of disease. Recorded values of temperature and salinity in some months during inspection in Hormozgan province specified stressful condition that may lead to WSD outbreak, however the disease did not appear. Therefore the hypothesis that the water physical and chemical conditions are reasons to prevent disease outbreak in Hormozgan province is being rejected. The policy of Hormozgan’s fishery authorities, to replaced Fenneropenaeus indicus with specific pathogen free Litopenaeus vannamei, that is more resistant to some of diseases, before incidence of WSD in farms and to before being endemic in the Hormozgan province, made an advantage compare to affected southern provinces that introduced Litopenaeus vannamei after WSD prevalence to their farms. However it does not guarantee to maintain current trend of being Hormozgan province farms free of white spot disease. Therefore establishing the principals of biosecurity are strongly emphasized. Strategies taken by the proficient authorities in preparation of SPF shrimp broodstock can be the most important factor in preventing WSD. Regarding biosecurity principals purchased feed must be free of shrimp head powder. Construction the new shrimp farms should be as far as it could be away from contaminated areas

    Studying Maximum Plantar Stress per Insole Design Using Foot CT-Scan Images of Hyperelastic Soft Tissues

    No full text
    Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2 ∘ to 0.4 ∘ degrees for custom-molded insole and over 1 ∘ for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2 ∘ to 0.4 ∘ degrees is found to be the most compatible form for foot
    corecore