573 research outputs found

    Harnessing post-translational modifications for next-generation HIV immunogens

    Get PDF
    The extensive post-translational modifications of the envelope spikes of the human immunodeficiency virus (HIV) present considerable challenges and opportunities for HIV vaccine design. These oligomeric glycoproteins typically have over 30 disulfide bonds and around a 100 N-linked glycosylation sites, and are functionally dependent on protease cleavage within the secretory system. The resulting mature structure adopts a compact fold with the vast majority of its surface obscured by a protective shield of glycans which can be targeted by broadly neutralizing antibodies (bnAbs). Despite the notorious heterogeneity of glycosylation, rare B-cell lineages can evolve to utilize and cope with viral glycan diversity, and these structures therefore present promising targets for vaccine design. The latest generation of recombinant envelope spike mimetics contains re-engineered post-translational modifications to present stable antigens to guide the development of bnAbs by vaccination

    P05-11. Yeast mannan genetics controls the molecular specificity of anti-carbohydrate antibodies cross-reactive to the HIV envelope

    Get PDF
    Immunologically self carbohydrates protect the human immunodeficiency virus type -1 (HIV-1) surface glycoprotein, gp120 from antibody recognition. However, one broadly neutralising antibody, 2G12, can protect against primary viral challenge by direct recognition of these "self" glycans on gp120

    SARS-CoV-2-specific memory B cells can persist in the elderly who have lost detectable neutralising antibodies

    Get PDF
    Memory B cells (MBC) can provide a recall response able to supplement waning antibodies with an affinity-matured response better able to neutralise variant viruses. We studied a cohort of elderly care home residents and younger staff (median age 87yrs and 56yrs respectively) who had survived COVID-19 outbreaks with only mild/asymptomatic infection. The cohort was selected to enrich for a high proportion who had lost neutralising antibodies (nAb), to specifically investigate the reserve immunity from SARS-CoV-2-specific MBC in this setting. Class-switched spike and RBD-tetramer-binding MBC persisted five months post-mild/asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike/RBD-specific MBC had a classical phenotype but activated memory B cells, that may indicate ongoing antigenic stimulation or inflammation, were expanded in the elderly. Spike/RBD-specific MBC remained detectable in the majority who had lost nAb, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike/S1/RBD-specific recall was also detectable by ELISpot in some who had lost nAb, but was significantly impaired in the elderly. Our findings demonstrate a reserve of SARS-CoV-2-specific MBC persists beyond loss of nAb, but highlight the need for careful monitoring of functional defects in spike/RBD-specific B cell immunity in the elderly

    The Glycan Shield of HIV Is Predominantly Oligomannose Independently of Production System or Viral Clade

    Get PDF
    The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120

    Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen

    Get PDF
    Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nn-ITN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)(4) spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nn-ITN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.Peer reviewe
    • …
    corecore