110 research outputs found

    The dual hit hypothesis of schizophrenia:evidence from animal models

    Get PDF
    Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits

    Tracer-specific PET and SPECT templates for automatic co-registration of functional rat brain images

    Get PDF
    Objectives: Template based spatial co-registration of PET and SPECT data is an important first step in its semi- automatic processing, facilitating VOI- and voxel-based analysis. Although this procedure is standard in human, using corresponding MRI images, these systems are often not accessible for preclinical research. Alternatively, manual co-registration of images to a MRI template is often performed. However, this is operator dependent and can introduce bias. Therefore, we constructed several tracer-specific PET and SPECT rat brain templates for automatic co-registration, spatially aligned with a widely used MRI-based template in Paxinos stereotactic space [1]. Methods: PET (18F-FDG, 11C-PK11195, and 11C-MeDAS) and SPECT (99mTc-HMPAO) brain scans were acquired from healthy male Sprague-Dawley and Wistar rats. Symmetrical left-right templates were constructed by averaging the scans. Within-modality registration was performed by minimizing the sum of squared difference and template to MRI registration by normalized mutual information maximization algorithm. For validation purposes, PET scans were acquired from a rat model of multiple sclerosis (MS) where focal demyelination was induced by injection of lysolecithin (or control saline) in right corpus callosum and striatum. Parametric SUV images were created for automatic co-registration. The validity of the templates was assessed by estimation of registration accuracy errors, inter-subject variability, right-to-left asymmetry indices, and voxel-based analysis of the MS model [2]. Results: The obtained mean registration errors were 0.097-1.277mm for PET, and 0.059-0.477mm for SPECT. These values are below spatial resolution of the cameras (1.4mm and 0.8mm, respectively) and in agreement with human literature [3]. Results from voxel-based analyses (Figure 1) correspond with those previously reported using VOI-based analysis [4], and correlate with the regions where lesion was induced. Conclusion: The constructed tracer-specific templates allow accurate registration of functional rat brain data, using automatic normalization algorithms available in standard packages (e.g., SPM, FSL), supporting either VOI- or voxel-based analysis. The templates will be made freely available for the research community

    Delayed Effects of a Single Dose Whole-Brain Radiation Therapy on Glucose Metabolism and Myelin Density:a Longitudinal PET Study

    Get PDF
    Purpose: Radiotherapy is an important treatment option for brain tumors, but the unavoidable irradiation of normal brain tissue can lead to delayed cognitive impairment. The mechanisms involved are still not well explained and, therefore, new tools to investigate the processes leading to the delayed symptoms of brain irradiation are warranted. In this study, positron emission tomography (PET) is used to explore delayed functional changes induced by brain irradiation. Materials and methods: Male Wistar rats were subjected to a single 25-Gy dose of whole brain X-ray irradiation, or sham-irradiation. To investigate delayed effects of radiation on cerebral glucose metabolism and myelin density, 18F-fluorodeoxyglucose (18F-FDG) PET scans were performed at baseline and on day 64 and 94, whereas N-11C-methyl-4,4′-diaminostilbene (11C-MeDAS) PET scans were performed at baseline and on day 60 and 90 post-irradiation. In addition, the open field test (OFT) and novel spatial recognition (NSR) test were performed at baseline and on days 59 and 89 to investigate whether whole brain irradiation induces behavioral changes. Results: Whole-brain irradiation caused loss of bodyweight and delayed cerebral hypometabolism, with 18F-FDG uptake in all brain regions being significantly decreased in irradiated rat on day 64 while it remained unchanged in control animals. Only amygdala and cortical brain regions of irradiated rats still showed reduced 18F-FDG uptake on day 94. 11C-MeDAS uptake in control animals was significantly lower on days 60 and 90 than at the baseline, suggesting a reduction in myelin density in young adults. In irradiated animals, 11C-MeDAS uptake was similarly reduced on day 60, but on day 90 tracer uptake was somewhat increased and not significantly different from baseline anymore. Behavioral tests showed a similar pattern in control and irradiated animals. In both groups, the OFT showed significantly reduced mobility on days 59 and 89, whereas the NSR did not reveal any significant changes in spatial memory over time. Interestingly, a positive correlation between the NSR and 11C-MeDAS uptake was observed in irradiated rats. Conclusions: Whole-brain irradiation causes delayed brain hypometabolism, which is not accompanied by white matter loss. Irradiated animals showed similar behavioral changes over time as control animals and, therefore, cerebral hypometabolism could not be linked to behavioral abnormalities. However, spatial memory seems to be associated with myelin density in irradiated rats

    Maternal infection during pregnancy aggravates the behavioral response to an immune challenge during adolescence in female rats

    Get PDF
    Prenatal and early postnatal infection have been associated with changes in microglial activity and the development of psychiatric disorders. Here, we investigated the effect of prenatal immune activation and postnatal immune challenge, alone and combined, on behavior and microglial cell density in female Wistar rats. Pregnant rats were injected with poly I:C to induce a maternal immune activation (MIA). Their female offspring were subsequently exposed to a lipopolysaccharide (LPS) immune challenge during adolescence. Anhedonia, social behavior, anxiety, locomotion, and working memory were measured with the sucrose preference, social interaction, open field, elevated-plus maze, and Y-maze test, respectively. Microglia cell density was quantified by counting the number of Iba-1 positive cells in the brain cortex. Female MIA offspring were more susceptible to the LPS immune challenge during adolescence than control offspring as demonstrated by a more pronounced reduction in sucrose preference and body weight on the days following the LPS immune challenge. Furthermore, only the rats exposed to both MIA and LPS showed long-lasting changes in social behavior and locomotion. Conversely, the combination MIA and LPS prevented the anxiety induced by MIA alone during adulthood. MIA, LPS, or their combination did not change microglial cell density in the parietal and frontal cortex of adult rats. The results of our study suggest that the maternal immune activation during pregnancy aggravates the response to an immune challenge during adolescence in female rats.</p

    Antiviral treatment in schizophrenia:a randomized pilot PET study on the effects of valaciclovir on neuroinflammation

    Get PDF
    BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms.METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [ 11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance ( p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.</p

    Antiviral treatment in schizophrenia:a randomized pilot PET study on the effects of valaciclovir on neuroinflammation

    Get PDF
    BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms.METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [ 11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance ( p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.</p

    Antiviral treatment in schizophrenia:a randomized pilot PET study on the effects of valaciclovir on neuroinflammation

    Get PDF
    BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms.METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [ 11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance ( p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.</p

    A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats

    Get PDF
    Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation

    Antiviral treatment in schizophrenia:a randomized pilot PET study on the effects of valaciclovir on neuroinflammation

    Get PDF
    BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms.METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [ 11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance ( p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.</p

    Antiviral treatment in schizophrenia:a randomized pilot PET study on the effects of valaciclovir on neuroinflammation

    Get PDF
    BACKGROUND: Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms.METHODS: We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [ 11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS: Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance ( p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION: We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.</p
    • …
    corecore