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Research report 

Maternal infection during pregnancy aggravates the behavioral response to 
an immune challenge during adolescence in female rats 

Cyprien G.J. Guerrin a, Erik F.J. de Vries a, Kavya Prasad a, Daniel A. Vazquez-Matias a, 
Lesley E. Manusiwa a, Lara Barazzuol b,c, Janine Doorduin a,* 

a Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the 
Netherlands 
b Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands 
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A B S T R A C T   

Prenatal and early postnatal infection have been associated with changes in microglial activity and the devel-
opment of psychiatric disorders. Here, we investigated the effect of prenatal immune activation and postnatal 
immune challenge, alone and combined, on behavior and microglial cell density in female Wistar rats. Pregnant 
rats were injected with poly I:C to induce a maternal immune activation (MIA). Their female offspring were 
subsequently exposed to a lipopolysaccharide (LPS) immune challenge during adolescence. Anhedonia, social 
behavior, anxiety, locomotion, and working memory were measured with the sucrose preference, social inter-
action, open field, elevated-plus maze, and Y-maze test, respectively. Microglia cell density was quantified by 
counting the number of Iba-1 positive cells in the brain cortex. Female MIA offspring were more susceptible to 
the LPS immune challenge during adolescence than control offspring as demonstrated by a more pronounced 
reduction in sucrose preference and body weight on the days following the LPS immune challenge. Furthermore, 
only the rats exposed to both MIA and LPS showed long-lasting changes in social behavior and locomotion. 
Conversely, the combination MIA and LPS prevented the anxiety induced by MIA alone during adulthood. MIA, 
LPS, or their combination did not change microglial cell density in the parietal and frontal cortex of adult rats. 
The results of our study suggest that the maternal immune activation during pregnancy aggravates the response 
to an immune challenge during adolescence in female rats.   

1. Introduction 

Immune activation during pregnancy or in early life are environ-
mental risk factors associated with psychiatric disorders such as 
schizophrenia, autism, attention deficit hyperactivity disorder (ADHD) 
and depression [1–4]. Especially an increased risk to develop schizo-
phrenia is linked to maternal exposure to infections agents. Influenza 
(3–7-fold increase), herpes, respiratory infections in the second semester 
(3-fold increase), toxoplasmosis (1–2-fold increase) and rubella (20 % of 
prenatally rubella-exposed subjects diagnosed with schizophrenia as 
adults/ 10–20 fold risk increase) have been associated with increased 
risk of schizophrenia [5,6]. Maternal infection was also shown to in-
crease the risk of offspring childhood infections, which together render 
the child more vulnerable to psychosis development [7]. In addition, 

hospitalization for infection during childhood was associated with a 
two-fold increased risk of adult psychosis [7–9]). However, given their 
relatively frequent occurrence, pre- or postnatal immune activation 
alone is usually not sufficient to induce a pathological phenotype and 
seems to have a modest effect in large populations [10–12]. For 
example, despite about 40 % of the population being infected during 
influenza pandemics, only a marginal increase (relative risk ratios of 
1–2.5) of the global incidence of schizophrenia was observed [12,13]. 
Therefore, it has been proposed that prenatal maternal infection may 
prime the individual to become more responsive to the pathological 
effects of a second postnatal immune challenge such as infection or 
sepsis during adolescence, a period of high susceptibility as many neu-
rodevelopmental processes are still taking place [14–17]. 

Many of these neurodevelopmental processes are regulated by the 
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immune system, which has been hypothesized to be altered by the 
combination of prenatal and adolescent infection [18]. This altered ac-
tivity of the immune system may be characterized by a change in the 
number and activity of microglial cells, which are not only involved in 
the immune defense of the brain, but also in many neurodevelopmental 
processes [19,20]. Increased neuroinflammatory markers like brain 
levels of pro-inflammatory cytokines and reactive microglia are often 
observed in patients with schizophrenia [21–23]. 

Rodent models of maternal immune activation (MIA), by adminis-
tering pregnant animals with an immune stimulant, are known to induce 
behavioral and neuropathological alterations in the offspring consistent 
with schizophrenia [24]. Preclinical data on microglial changes in MIA 
offspring is contradictory, as some studies reported no change in 
microglial density and morphology in adolescent and adult MIA 
offspring [25–29], while others reported an increase in microglia den-
sity [27,30–33]. Studies investigating the effect of a neonatal or 
adolescent immune challenge are inconsistent as some have shown 
changes in anxiety, social and exploratory behavior that remained until 
adulthood, while other studies did not observe such changes [34–36]. 
An adolescent immune challenge was also shown to increase 
pro-inflammatory and decrease anti-inflammatory responses in the 
brain 24 h after the adolescence immune challenge [37]. This increased 
immune response was significantly higher in male offspring prenatally 
exposed to MIA [37]. However, whether similar susceptibility can also 
be observed in female MIA offspring remains unclear and requires 
further investigation, considering the gender differences noted in human 
psychiatric disorders associated with maternal infection [24,38,39]. 
Gender differences include women having a higher lifetime prevalence 
of mood and anxiety disorder than men and a later onset of schizo-
phrenia psychoses for example [40–44]. Recent research have also 
demonstrated sex-specific microglial signatures in both patients with 
psychiatric disorders and preclinical models, that may contribute to the 
symptoms’ differences [35]. Furthermore, the possible long-term effect 
of pre- and postnatal infection on microglial activity and behavior re-
mains unclear. 

In this study, we tested whether maternal immune activation (MIA), 
an adolescent immune challenge, or their combination can affect 
behavior and microglial activity in adult female rats. To model the ef-
fects of MIA, we administered the viral mimic polyinosinic: polycytidylic 
acid (poly I:C) known to trigger a wide range of behavioral and neuronal 
abnormalities related to schizophrenia [24,45]. To model the effects of 
an immune challenge during adolescence we administered lipopoly-
saccharide (LPS), a major component of the outer membrane of 
gram-negative bacteria, a factor shown to induce an acute inflammatory 
response in humans and rodents [46,47]. Symptoms often observed in 
schizophrenia were measured. Abnormalities in social behavior, anxi-
ety, anhedonia have been repeatedly associated with dysfunction of the 
immune system notably in cerebral cortex [48–51]. Therefore, micro-
glial cells density was examined by quantification of cells immunore-
active for the ionized calcium-binding adaptor molecule 1 (Iba1) in the 
parietal and frontal cortices, brain regions notably involved in the 
studied behavior [52–54]. 

2. Materials and methods 

2.1. Animals 

All experiments were performed in accordance with European 
Directive 2010/63/EU and the Law on Animal experiments of the 
Netherlands. Eleven 11-weeks old male and female Wistar rats (strain 
HsdCpb:WU) were purchased from Envigo (Horst, The Netherlands) and 
left for acclimatization for at least seven days before breeding. Breeding 
consisted of placing a male rat in the cage of a female rat and leave them 
overnight for a total duration of 36 h (from early morning to late af-
ternoon the next day). When the males were removed was considered as 
gestational day 1. Pregnancy was identified by vaginal plugs, weight 

gain and physical appearances. Pregnant rats were housed individually 
until weaning on postnatal day (PND) 21. The offspring were randomly 
housed in groups of 2 or 3 rats in humidity-controlled (55–60 %) and 
thermo-regulated (21 ± 2 oC) rooms, with a 12:12-h light:dark cycle 
(lights on at 7 a.m.). Food and water were available ad libitum. Only the 
female offspring were used in this study. 

2.2. Experimental design 

MIA was induced by injecting pregnant rats with poly I:C, a viral 
mimic, on gestational day 15 (GD15). Control rats were injected with 
saline. Female offspring were randomized and intraperitoneally injected 
with saline or 1 mg/kg of bodyweight of LPS on PND36. Female 
offspring were randomly divided into four groups: (1) control (Control, 
n = 13 from 5 different litters), (2) rats from mothers injected with poly 
I:C (MIA, n = 12 from 5 different litters), (3) rats injected with LPS 
during adolescence (LPS, n = 12 from 6 different litters), and (4) rats 
from mothers injected with poly I:C and injected with LPS during 
adolescence (MIA+LPS, n = 12 from 6 different litters). All the offspring 
rats were exposed to all the behavioral tests that were performed on day 
37–44 and 97–100 (Fig. 1A). More specifically, the elevated-plus maze 
(EPM) was conducted on day 41 and 97, the open field (OFT) test was 
conducted on day 42 and 98, the social interaction test was conducted 
following the OFT on day 42 and 98 and the Y-maze was conducted on 
day 44 and 100. The behavioral tests were conducted during the light 
phase of the rats. Brains were collected on day 105 to measure microglial 
density. 

2.3. Maternal immune activation 

On GD15, pregnant dams were put under anesthesia with 5 % iso-
flurane in oxygen and intravenously injected in the tail vein with 4 mg/ 
kg poly-I:C in saline (MIA, n = 6) or saline (control, n = 6). The timing 
and dosage are commonly reported for this rat model [55,56]. Poly-I:C 
potassium salt (Sigma-Aldrich) was dissolved in 0.9 % NaCl solution to 
yield a final concentration of 2 mg/mL. All poly I:C solutions were 
freshly prepared on the day of administration. After the poly-I:C 
administration, animals were allowed to wake up, returned to their 
home cages and checked for possible sickness behavior. A guideline 
checklist for the methodological details of the MIA model can be found 
in the supplemental materials [57]. To reduce the litter effect, one to 
three female offspring from the same litter were used per group. 

2.4. LPS injection during adolescence 

On PND36, half of rats were intraperitoneally injected with 1 mg/kg 
bodyweight of E. coli LPS (Sigma Aldrich, L2630) dissolved in 1 mL of 
saline. The other half was intraperitoneally injected with a saline solu-
tion. The 1 mg/kg bodyweight was selected after a pilot study during 
which three different doses were tested (0.5, 1 and 2 mg/kg). As similar 
behavior in the OFT, EPM and SPT was observed in rats injected with 1 
and 2 mg/kg of LPS, we selected the lower dose. To induce an immune 
challenge during adolescence, rats were injected on day 36 as conducted 
by a previous study [37]. Rats were checked for possible sickness 
behavior (reduced motility in the cage, immobility, reduced water and 
food intake, piloerection) and were weighted daily for 5 consecutive 
days. 

2.5. Sucrose preference test 

Sucrose preference tests (SPT) were performed on PND37 (the first 
night after the LPS immune challenge), 41, and 97 to measure anhe-
donia. The sucrose preference test was conducted on PND37 and 41 to 
determine the immediate and possible short-lasting effect of LPS on 
anhedonia (sucrose preference). Before the test, the animals underwent 
4 consecutive days of SPT training consisting of placing a bottle with 1 % 
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sucrose in tap water in the cage for 1 h. After the 4 days of SPT training 
and 2 overnight SPT training sessions, the SPT was performed on 
PND37, 41, and 97. The overnight SPT training sessions and SPT con-
sisted of overnight exposure to two bottles, one filled with drinking 
water, and one filled with a 1 % sucrose solution dissolved in drinking 
water. The sucrose preference was measured as the outcome parameter 
and was calculated according to the formula: sucrose preference (%) =
[Sucrose intake (mL)/ (Sucrose intake (mL)+ Water intake (mL))] *100 
%. 

2.6. Elevated-plus maze 

The EPM test was performed on PND41 and 97 to measure anxiety 
and locomotion. The EPM arena is placed at an elevation of 62 cm and is 
composed of four 50 cm long arms (2 opposite open arms and two 
opposite arms enclosed by high walls) and a center area allowing the rats 
to travel from one arm to another. After 30 min of acclimatization in the 
experimental room, the rat was placed in the center of the EPM arena 
facing a closed arm and allowed to freely explore for 5 min, a duration 
often selected for the EPM [58,59] Time spent in open and close arms 
and in the center, the number of entries in the open arms and the total 
distance travelled were measured. 

2.7. Open field test 

The OFT was performed on PND42 and 98 to measure anxiety and 
locomotion. Rats were placed in the experimental room at least 30 min 
before the test to acclimatize. The OFT consisted of placing the rat in the 
periphery of a 100 cm diameter circular area for 5 min, similarly to what 
was conducted by previous studies [29,58,60]. The center was defined 
as a circle with a 70 cm diameter. The time spent in the center, number 
of entries in the center and total distance travelled were measured. 

2.8. Social interaction test 

SIT was performed following the open field test on PND42 and 98 to 
measure social behavior. To stimulate and motivate social behavior, the 
rats were socially isolated for 2 h prior to testing [61,62]. The experi-
mental rat and an unfamiliar rat were placed within a 50 * 50 cm square 
arena for 5 min. Rats were considered unfamiliar if they had never 
previously encountered the experimental rats. Unfamiliar rats were 
matched for with the experimental rats for age, sex and bodyweight. 
Eight different unfamiliar rats were used. The experimental rat was 
considered as interacting when it was displaying social behavior toward 
the unfamiliar rat. Grooming, sniffing, licking, following closely and 
playing behavior (pinching, pouncing, fighting) were considered as so-
cial behavior and not differentiated during the analysis. 

2.9. Y-maze 

The Y-maze test was performed on PND44 and 100 to measure 
working memory and locomotion. The y-maze arena is a Y shape arena 
composed of three 50 cm arms intersected at an angle of 120 degrees. 
After at least 30 min of acclimatization to the experimental room, the rat 
was placed in the center of a Y-maze for a total duration of 8 min [58]. 
Spontaneous alternation was defined as entering three different arms 
consecutively. The alternation index was calculated using the following 
formula: alternation index = [(number of spontaneous alternations) 
/(total number of arm entries - 2) * 100 Alternation index and total 
locomotion were measured. 

2.10. Analysis of behavior 

The EPM, OFT and Y-maze were video recorded and analyzed offline 
using Ethovision XT14 (Noldus Information Technology, Wageningen, 
The Netherlands). The center point of the animal was used to 

automatically track the rat’s behavior. The social interaction test was 
video recorded and manually scored by two independent examiners that 
were blinded to the experimental groups. In the SPT, 2 control, 1 MIA 
and 1 LPS rats on PND37, 1 control on PND41 and 1 control on PND97 
were excluded from the analysis due to leaking or obstructed bottles 
found in the following morning. In the EPM, 1 adolescent control, 1 
adolescent MIA, 4 adolescent LPS, 2 adolescent MIA+LPS and 3 
MIA+LPS rats were excluded because the fell off the EPM during the 
data collection. No data is missing from the SIT and OFT. 

2.11. Brain collection and immunohistochemistry 

On PND105, rats were put under deep anesthesia and the heart was 
perfused with PBS. The right hemisphere was isolated and fixed in 4 % 
paraformaldehyde (PFA) at room temperature for 48 h. Subsequently, 
the brains were dehydrated in a 25 % sucrose solution at 4 ◦C, embedded 
in optimal cutting temperature (OCT) compound and stored at − 80 ◦C. 

For immunohistochemistry staining, 15 µm sagittal brain sections 
were prepared by cryosection. After washing three times with PBS, an-
tigen retrieval was performed by pressure cooking for 10 min in 10 mM 
sodium citrate, pH 6.0. The sections were subsequently washed and 
incubated in phosphate-buffered saline (PBS) with 0.3 % hydrogen 
peroxide for 30 min to block endogenous peroxidases. After washing 
again, the sections were blocked for 30 min with 2 % normal donkey 
serum (Jackson Immuno Research, 017–000-121) in PBS with 1 % 
Triton X-100 (PBS+) and 2 % bovine serum albumin (BSA). The sections 
were then incubated with the primary rabbit-α-ionized calcium-binding 
adapter molecule 1 (Iba1) antibody (1:2000; Wako, 01–19741) with 
PBS+ and 1 % BSA overnight at 4 ◦C. The following day, the sections 
were washed and incubated with the biotinylated secondary donkey- 
α-rabbit IgG antibody (1:400; Jackson Immuno Research, 711–065-152) 
for 2 h. After washing with PBS, the sections were incubated with 
Avidin/Biotinylated enzyme Complex ABC solution (VECTASTAIN® 
ABC Kit, Vector Laboratories, PK-6100) for 30 min. The sections were 
washed and stained using 0.04 % 3,3′-diaminobenzidine and 0.03 % 
hydrogen peroxide for 10 min and subsequently dehydrated using a 
sequence of increasing ethanol concentrations (50–100 %). After being 
air-dried, the slides were mounted with coverslips using DePex (Serva) 
and stored at room temperature before imaging using light microscopy. 

2.12. Microglial density and spatial distribution analysis 

The density of microglia in the parietal and frontal cortices was 
determined by counting all Iba1 positive cells in 6–8 region of interest of 
known dimensions (0.28 mm2) per cortical region and animal using 
ImageJ software (http://rsb.info.nih.gov/ij/). The spatial distribution of 
microglia in the cortex and the distance of the microglia to their nearest 
neighbor, that is, the average Euclidian distances between the nearest 
cells, were determined using the NND plugin for ImageJ. Five MIA, LPS, 
MIA+LPS rats, and six controls rats were used. 

2.13. Statistical analysis 

Statistical analyses of body weight, and behavior were performed 
using SPSS (IBM SPSS Statistics, Version 22.0). A generalized estimating 
equation (GEE) analysis was performed for longitudinal data, using 
‘MIA’, ‘LPS’ and ‘age’ as factors, as this analysis can account for missing 
data and was adjusted for multiple comparisons using the “least signif-
icant difference”. Wald Chi-square (W) and degrees of freedom (df) are 
presented for the GEE analysis. A one-way ANOVA using GraphPad 8 
software was performed to assess differences between groups in Iba1 
staining, as it was assessed at only a single time point and no data was 
missing. The data are presented as mean ± standard deviation (SD). 
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3. Results 

3.1. Previous exposure to MIA induced a longer reduction in bodyweight 
following an LPS challenge during adolescence 

The bodyweight of all groups increased with age (W=9636, df=14, 
p < 0.001, Fig. 1B). We observed an interaction between LPS and age 
(W=287, df=1, p < 0.0001). On PND37, the day following the LPS in-
jection, pairwise comparison analyses (W=3E+13, df=45, p < 0.0001) 
revealed that LPS and MIA+LPS rats had a lower bodyweight than 
control (− 11 %, p < 0.001; − 6 %, p = 0.002) and MIA rats (− 15 %, 
p < 0.001; − 10 %, p = 0.001). While this reduction was not observed in 

LPS rats anymore on PND38, MIA+LPS rats still had a lower bodyweight 
than control and MIA rats on PND38 (− 14 %, p < 0.001; − 9 %, 
p = 0.011), PND39 (− 20 %, p < 0.006; − 14 %, p = 0.001), and PND40 
(− 15 %, p < 0.028; − 6 %, p = 0.003). 

3.2. Previous exposure to MIA aggravates anhedonia following an LPS 
challenge during adolescence 

The sucrose preference test was used to assess anhedonia (Fig. 1C). 
We observed a main effect of age (W=22, df=2, p < 0.001) and a 
LPS*age interaction (W=19, df=2, p < 0.001). On PND37, pairwise 
analysis (W=50, df=11, p < 0.001) revealed that rats exposed to the 

Fig. 1. Study design, bodyweight, anhedonia, social behavior, anxiety, locomotion and working memory changes. A. Study design. Pregnant dams were intrave-
nously injected with either saline or poly I:C on gestational day (GD) 15. Behavioral experiments conducted during adolescence (PND36–46) and adulthood 
(PND96–104). Brains were collected for iba1 staining on PND105. B. Bodyweight. C. Anhedonia in the sucrose preference test. D. Social behavior in the social 
interaction test. E.G. Anxiety in the EPM and the OFT. I. Working memory in the Y-maze. F.H.J. Locomotion. N = 11–13 rat per group. Data is presented as mean 
±SD. Statistically significant differences between groups were perfected using GEE analysis and are indicated by asterisks: *p < 0.05, * *p < 0.01, * **p < 0.001. 
Significant differences between time points are not shown. 
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combination of MIA and LPS had a lower sucrose preference than control 
(− 24 %, p = 0.013) and MIA rats (− 28 %, p < 0.001). LPS rats had a 
lower sucrose preference than MIA rats (− 18 %, p = 0.003), but not 
control rats. No differences between groups were observed on PND41 
and PND97. 

3.3. The combination of MIA and LPS increased locomotion during 
adulthood in the EPM 

The EPM was used to assess anxiety (Fig. 1D) and locomotion 
(Fig. 1E). We observed no difference in the EPM during adolescence. 

We observed an interaction between MIA and age in the percentage 
of time spent in the open arm (W=7, df=1, p = 0.007). In adulthood, 
pairwise analysis (W=11, df=7 p = 0.118) revealed that MIA rats spent 
longer time in the open arms than LPS rats (+57 %, p = 0.033). 

We observed a main effect of age on the distance travelled in the EPM 
(W=11, df=1, p < 0.001) and an interaction between MIA and age 
(W=5, df=1, p = 0.021). In adulthood, pairwise analysis (W=31, df=7, 
p < 0.001) revealed that the rats exposed to the combination of MIA and 
LPS traveled significantly more than control (+22 %, p = 0.013) and 
LPS rats (+29 %, p = 0.002). 

We observed no significant difference in time spent in the center, 
time spent in the closed arms, or the number of entries in the open arms 
(Supplementary Fig. 1A–C). 

3.4. LPS exposure during adolescence prevented the MIA-induced 
reduction in anxiety during adulthood in the OFT 

The percentage of time spent in the center of the arena and the total 
distance travelled in the OFT were used to assess anxiety (Fig. 1F) and 
locomotion (Fig. 1G), respectively. 

We observed a main effect of age (W=27, df=1, p < 0.001) and an 
interaction between MIA and age (W=6, dl=1, p = 0.013) on the time 
spent in the center. In adulthood, pairwise analysis (W=30, df=7, 
p < 0.001) revealed that MIA rats spent more time in the center of the 
open field than control (+48 %, p = 0.006), LPS (+42 %, p = 0.018) and 
MIA+LPS rats (+37 %, p = 0.036). We observed no differences in dis-
tance travelled in the OFT between groups. 

3.5. The combination of MIA and LPS reduced working memory in 
adolescence and increased locomotion during adulthood in the Y-maze 

Spontaneous alternations and distance travelled in the Y-maze were 
measured to assess working memory (Fig. 1H) and locomotion (Fig. 1I), 
respectively. 

We observed neither an interaction nor a main effect of MIA, LPS or 
age on the alternation index. 

We observed a main effect of age on the distance travelled (W=41, 
df=1, p < 0.001). In adulthood, pairwise analysis (W=93, df=7, 
p < 0.0001) revealed that MIA+LPS rats travelled significantly more 
than MIA (+14 %, p = 0.030) and LPS rats (+15 %, p = 0.027). 

3.6. MIA increased social behavior during adolescence and adulthood 

To test social behavior, we quantified the preference of a rat for 
interacting with an unfamiliar rat (Fig. 1J). We observed a main effect of 
MIA (W=9, df=1, p = 0.003), LPS (W=5, df=1, p = 0.028), and age 
(W=71, df=1, p < 0.001) and an interaction between MIA and age 
(W=5, df=1, p = 0.027). In adolescence, pairwise comparisons 
(W=116, df=7, p < 0.0001), revealed that MIA (+41 %, p < 0.001) and 
MIA+LPS rats (+45 %, p < 0.001) spent more time interacting with the 
unfamiliar rat than control rats. This effect persisted only for MIA+LPS 
rats. In adulthood, the rats exposed to the combination of MIA and LPS 
had a higher interaction time than control (+38 %, p = 0.013) and MIA 
rats (+29 %, p = 0.020). 

3.7. MIA and LPS did not affect microglia density in the parietal and 
frontal cortex during adulthood 

To determine the effect of MIA and LPS on microglia, microglial cell 
density was determined in the parietal and frontal cortices by counting 
the number of Iba1-positive cells (Fig. 2A). In adulthood, we observed 
no differences between groups in the density of microglial cells (Fig. 2B. 
C.) or the nearest neighbor distance between microglial (Fig. 2D.E.) in 
the parietal and frontal cortices. 

4. Discussion 

The present findings indicate that prenatal maternal immune acti-
vation increased the behavioral susceptibility of the female offspring to 
an immune challenge during adolescence (Fig. 3.). More specifically, 
female MIA offspring had a more pronounced reduction in sucrose 
preference the day after an immune challenge during adolescence than 
healthy rats. Furthermore, MIA offspring exposed to the adolescent 
immune challenge showed long-lasting changes in social behavior and 
locomotion that were not observed if rats were exposed to MIA or LPS 
alone. Conversely, the MIA alone reduced anxiety in adulthood, while 
the combination of MIA and LPS prevented such reduction. Prenatal 
immune activation, adolescent immune challenge, or their combination 
did not change microglial cell density in the parietal and frontal cortex 
of adult rats. 

MIA exposure is a well-validated rodent model that induces behavior 
that is similar to the positive, negative and cognitive symptoms observed 
in schizophrenia and other psychiatric disorders [24]. Male MIA rat 
offspring from mothers exposed to 4 mg/kg iv or 10 mg/kg ip of poly I:C 
on GD15 (similar to our study) were observed to display a reduction 
[63–65] or no change in social behavior or an increase in aggressive 
behavior while non-aggressive behavior remained normal [66,67] in the 
social interaction test (rats freely interacting). In contrast, in our study, 
MIA alone increased the duration of social interaction during adoles-
cence but not adulthood, which might be due to MIA rats seeking for 
social comfort to reduce stress. In line with our study, another study 
observed that male rat MIA (5 mg/kg poly I:C, GD 15) offspring had an 
increase in social behavior [65,68] characterized by an increase in 
anogenital sniffing. They suggested that an increase in anogenital 
sniffing may be an indication of impaired social recognition resulting 
from difficulties to identify and to accommodate to a novel rat. Perhaps 
a similar deficit could explain the increased social behavior observed in 
our study. Future studies should investigate in more depth the different 
types of social playing behavior during adolescence (sniffing, pouncing, 
and pinning); as well as social behavior in adulthood (anogenital sniff-
ing, sniffing, aggressive behavior, grooming, climbing, following, 
duration, and number of episodes of social interplay) as it could provide 
a better insight in the social behavior that may be altered by MIA. Future 
studies should also consider measuring pure social behavior in addition 
to the commonly measured social preference in the 3-chamber test. 

We also found that adult female offspring exposed to MIA spent more 
time in the center of the open field arena, as compared to control rats 
suggesting a reduction in anxiety levels. However, in line with other 
studies [29,69,70], MIA rat (4 mg/kg poly I:C, GD14–15) offspring did 
not show differences in any parameters in the EPM, which is considered 
a more robust test used to assess anxiety. Taken together, the results 
from the OFT and EPM may suggest mild anxiety induced by MIA. 
Another possible explanation is that MIA offspring took longer to 
habituate and accommodate to the arena and thus spent longer time 
exploring its center. Finally, we observed that female rats exposed to 
MIA had no significant changes in anhedonia, locomotion, and working 
memory in the SPT, OFT, EPM, and Y-maze, respectively. Previous 
studies with rats exposed to MIA (4 mg/kg poly I:C, GD14) have shown 
contradicting results, as some of them support our findings such as no 
change in sucrose preference, working memory, and locomotion [28, 
69], while other studies exposing mice to MIA (5 mg/kg, GD12–15) have 
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reported significant alterations in these behavioral outcomes [71–73]. 
Differences in the timing of the maternal immune activation and in 
species may explain these differences, as they have been shown to 
critically determine the patterns of behavioral abnormalities displayed 
in the offspring at adult age, as early maternal immune activation was 
shown to induce anxiety, while late MIA did not [74,75]. 

Injection of LPS is a well-validated model to challenge the immune 
system. In the present study, LPS injected during adolescence (day 36) 

induced immediate but not long-lasting sickness behavior characterized 
by a reduced body weight and sucrose preference in SPT. This is 
consistent with findings in animal studies demonstrating sickness 
behavior following LPS injection (0.5–2 mg/kg / day 35–60) [37,46] 
and clinical data indicating similar behavior in response to an LPS in-
jection or an infection [47]. The observed LPS effects on behavior were 
more pronounced when rats were previously exposed to MIA suggesting 
an additive effect of LPS and MIA. For example, sucrose preference 

Fig. 2. Density of microglia in adulthood. Representative iba1 staining of microglia in the parietal and frontal cortices of Control, MIA, LPS, and MIA+LPS groups 
(A). Number of Iba1-positive cells/mm2 in the frontal (B), and parietal (C) cortices. Nearest neighbor distance analysis in the frontal (D.) and parietal cortices (E.). 
n = 5–6 rats per group. Graphs represent mean ± SD. 
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dropped significantly more in the female rats exposed to both LPS and 
MIA. Furthermore, only the combination of MIA and LPS induced a 
reduction in body weight, which remained up to 5 days after the LPS 
challenge. In addition, female MIA offspring exposed to LPS displayed 
an increase in social behavior during adolescence that remained until 
adulthood. This effect was not observed in rats exposed to MIA or 
adolescent LPS administration alone. LPS injection (0.05 mg/kg) was 
shown to promote social behavior in adult MIA (20 mg/kg ip, GD 12.5) 
male offspring by increasing the proinflammatory cytokine IL-17a [76]. 
Perhaps the cumulative production of IL-17a induced by MIA and LPS 
could explain the long-lasting increase in social behavior observed in 
our study. We also observed that the combination of MIA and LPS during 
adolescence induced hyperlocomotion in adulthood in the EPM and 
Y-maze but not OFT. This could be related to the design of the arenas 
used to measure the paradigms. The open field arena confronts the an-
imals to a wide-open space, while the EPM and Y-maze feature high 
walls which could increase the feeling of security. This design difference 
could result in the increased locomotion found in the EPM and Y-maze, 
but not in the OFT. Hyperlocomotion is often associated with alterations 
in the mesolimbic dopaminergic pathway [77], a pathway involved in 
schizophrenia for example. Alterations in this dopaminergic pathway 
may explain the behavioral changes observed in our study as this system 
is also involved in regulating social behavior [78,79]. Our results are in 
line with clinical studies showing that hyperactivity symptoms are 
common in patients with autism [80] and can be observed in patients 
with schizophrenia [81]. Deviant activity and density of microglia, the 
main immune cells of the brain, has been associated with several psy-
chiatric disorders including schizophrenia. In our study, we did not find 
any differences in the number of Iba1+ cells in the parietal and frontal 
cortices, regions involved in the symptomatology of many psychiatric 
disorders, of adult female rats exposed to MIA, adolescent immune 
challenge, or their combination, as compared to control rats. The pre-
clinical data on microglial changes in MIA offspring is contradictory. 
While some studies reported no change in microglial density and 
morphology in adult MIA (4–5 mg/kg poly I:C, GD15) offspring [25, 

27–29,73,82], others reported an increase in density of microglia and 
morphological changes in the hippocampus, and neocortex [66], or even 
a decrease in reactivity in some brain regions [27,32,66]. The timing of 
the poly I:C immune activation is also important as MIA on GD9 or 12 
induced significant changes in microglia morphology and density while 
it did not have a significant effect on GD15 [27,30,31,83]. Clinical 
studies give similar conflicting results as some studies showed low to 
moderate levels of neuroinflammation in schizophrenia patients, 
whereas other studies did not detect any change in microglial density 
and activity [84–86]. A possible explanation might be that a change in 
microglia activity is mostly present in certain neurodevelopmental 
stages such as during early development and following the immune 
challenge during adolescence. Supporting this hypothesis, male MIA 
(5 mg/kg of poly I:C iv, GD15) offspring exposed to an LPS (2 mg/kg, 
day 35) immune challenge during adolescence were shown to have a 
synergistic increase in brain pro-inflammatory cytokines and a reduc-
tion in anti-inflammatory cytokines [37]. Another study observed that 
MIA (1 mg/kg of poly I:C iv, GD9) combined with adolescent stressors 
induced a transient increase in microglial activity that resulted in 
behavioral changes in adulthood [87]. Perhaps MIA in female offspring 
induced similar transient changes in the immune system, which could 
help to explain the short- and long-term impairment in behavior, such as 
the aggravated reduction in sucrose preference in the SPT following the 
LPS challenge and alterations in social behavior and locomotion in 
adulthood that were observed only if the rats were exposed to the 
combination of MIA and LPS. This possible deviant activity of the im-
mune system following the adolescent LPS exposure, a critical devel-
opmental period, possibly characterized by a subtle change in the 
number and activation status of microglia, may alter neuro-
developmental processes such as synaptic pruning. Synaptic pruning 
was shown to be dysregulated in neurodevelopmental disorders such as 
schizophrenia and autism [19,20,88] [89,90]. These immune changes 
may induce attenuated or excessive synaptic pruning that would result 
in lower or higher synaptic connectivity, as observed in schizophrenia 
and autism, respectively [19,20]. Positron emission tomography (PET) 

Fig. 3. Summary figure of the effect of MIA, LPS during adolescence and their combination on behavior and microglia. Arrows up and down represent significant 
differences compared to control animals or animals exposed to one of the two stressors on the same day. ↔ = no significant changes, ↑ = increase, ↑↑ = additive 
increase, ↓ = decrease, ↓↓= additive decrease. Created with BioRender.com. 
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imaging and post-mortem studies observed a reduction in synaptic 
vesicle glycoprotein 2 A (SV2A), synaptophysin, 
synaptosomal-associated protein (SNAP25) and post synaptic density 95 
(PSD-95) protein, all markers of synaptic density, in the frontal cortex 
and hippocampus in patients with schizophrenia [91–93]. On the other 
hand, a higher spine density [94], disrupted synapse excitatory versus 
inhibitory balance [95] and hyperactivity in frontal brain regions [96] 
was observed in patients with autism spectrum disorders. Future studies 
should investigate further the possible link between prenatal and 
adolescent infection, the immune system, synaptic pruning and synaptic 
density. Our study includes some limitations, such as the absence of 
direct measurement of inflammatory cytokines, such as interleukin 1β 
and interleukin 10, in brain and plasma. Furthermore, our longitudinal 
study design did not allow the assessment of possible changes in 
microglia and the immune system shortly after the adolescent LPS im-
mune challenge. As previously mentioned, MIA (5 mg/kg of poly I:C iv, 
GD15) was shown to increase the susceptibility of the male offspring to 
an adolescent immune challenge (2 mg/kg of LPS) characterized by a 
synergistic increase in pro-inflammatory and decrease in 
anti-inflammatory responses in the brain 24 h after the adolescent im-
mune challenge [37]. We suggest that similar changes would be induced 
in our rat model. Finally, only females were included in this study, thus 
preventing to determine a possible sex difference. 

5. Conclusion 

Our results indicate that prenatal maternal immune activation 
increased susceptibility of the female offspring to behavioral impair-
ment after an adolescent immune challenge. This increased suscepti-
bility was characterized by a pronounced reduction in body weight and 
anhedonia behavior during the days following the adolescent immune 
challenge, as well as changes in social behavior and locomotion in 
adulthood. These alterations were not observed if only one stressor was 
applied. These symptoms mimic the symptoms associated with neuro-
developmental disorders. For example, anhedonia, altered social 
behavior, and hyperactivity are often observed in patients with autism. 
The MIA-induced enhanced susceptibility to an immune challenge 
during adolescence was not accompanied by an increase in microglial 
density in adulthood. Future studies are needed to investigate the im-
mune response to the combination of MIA and immune challenge during 
adolescence in more detail to better understand the behavioral changes 
observed in our model. 
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