4 research outputs found

    Length and time scales of cell-cell signaling circuits in agar

    Get PDF
    A community of genetically heterogeneous cells embedded in an unmixed medium allows for sophisticated operations by retaining spatial differentiation and coordinating division-of-labor. To establish the principles of engineering reliable cell-cell communication in a heterogeneous environment, we examined how circuit parameters and spatial placement affect the range of length and time scales over which simple communication circuits interact. We constructed several "sender" and "receiver" strains with quorum-sensing signaling circuits. The sender cell colony produces acyl homoserine lactones (AHL), which diffuse across the semisolid medium. The receiver cell colony detects these signal molecules and reports by fluorescence. We have found that a single colony of one sender variant is sufficient to induce receiver response at more than 1.5cm separation. Furthermore, AHL degradase expression in receiver colonies produces a signal threshold effect and reduces the response level in subsequent receiver colonies. Finally, our investigation on the spatial placement of colonies gave rise to the design of a multicellular long-range communication array consisting of two alternating colony types. Its signal response successfully propagated colony-by-colony along a six-colony array spanning 4.8cm at a transmission velocity of 12.8 hours per colony or 0.075cm per hour. In addition, we have developed a reaction-diffusion model that recreates the observed behaviors of the many performed experiments using data-informed parameter estimates of signal diffusion, gene expression, and nutrient consumption. These results demonstrate that a mixed community of colonies can enable new patterning programs, and the corresponding model will facilitate the rational design of complex communication networks

    Length and time scales of cell-cell signaling circuits in agar

    Get PDF
    A community of genetically heterogeneous cells embedded in an unmixed medium allows for sophisticated operations by retaining spatial differentiation and coordinating division-of-labor. To establish the principles of engineering reliable cell-cell communication in a heterogeneous environment, we examined how circuit parameters and spatial placement affect the range of length and time scales over which simple communication circuits interact. We constructed several "sender" and "receiver" strains with quorum-sensing signaling circuits. The sender cell colony produces acyl homoserine lactones (AHL), which diffuse across the semisolid medium. The receiver cell colony detects these signal molecules and reports by fluorescence. We have found that a single colony of one sender variant is sufficient to induce receiver response at more than 1.5cm separation. Furthermore, AHL degradase expression in receiver colonies produces a signal threshold effect and reduces the response level in subsequent receiver colonies. Finally, our investigation on the spatial placement of colonies gave rise to the design of a multicellular long-range communication array consisting of two alternating colony types. Its signal response successfully propagated colony-by-colony along a six-colony array spanning 4.8cm at a transmission velocity of 12.8 hours per colony or 0.075cm per hour. In addition, we have developed a reaction-diffusion model that recreates the observed behaviors of the many performed experiments using data-informed parameter estimates of signal diffusion, gene expression, and nutrient consumption. These results demonstrate that a mixed community of colonies can enable new patterning programs, and the corresponding model will facilitate the rational design of complex communication networks

    Total Synthesis of a Functional Designer Eukaryotic Chromosome

    No full text
    Designer Chromosome One of the ultimate aims of synthetic biology is to build designer organisms from the ground up. Rapid advances in DNA synthesis has allowed the assembly of complete bacterial genomes. Eukaryotic organisms, with their generally much larger and more complex genomes, present an additional challenge to synthetic biologists. Annaluru et al. (p. 55 , published online 27 March) designed a synthetic eukaryotic chromosome based on yeast chromosome III. The designer chromosome, shorn of destabilizing transfer RNA genes and transposons, is ∼14% smaller than its wild-type template and is fully functional with every gene tagged for easy removal. </jats:p
    corecore