116 research outputs found
Quantum Computation as a Dynamical Process
In this paper, we discuss the dynamical issues of quantum computation. We
demonstrate that fast wave function oscillations can affect the performance of
Shor's quantum algorithm by destroying required quantum interference. We also
show that this destructive effect can be routinely avoided by using
resonant-pulse techniques. We discuss the dynamics of resonant pulse
implementations of quantum logic gates in Ising spin systems. We also discuss
the influence of non-resonant excitations. We calculate the range of parameters
where undesirable non-resonant effects can be minimized. Finally, we describe
the ``-method'' which avoids the detrimental deflection of non-resonant
qubits.Comment: 13 pages, 1 column, no figure
From the Boltzmann equation to fluid mechanics on a manifold
We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an
arbitrary surface from the Boltzmann equation on the surface
On Properties of Boundaries and Electron Conductivity in Mesoscopic Polycrystalline Silicon Films for Memory Devices
We present the results of molecular dynamics modeling on the structural
properties of grain boundaries (GB) in thin polycrystalline films. The
transition from crystalline boundaries with low mismatch angle to amorphous
boundaries is investigated. It is shown that the structures of the GBs satisfy
a thermodynamical criterion. The potential energy of silicon atoms is closely
related with a geometrical quantity -- tetragonality of their coordination with
their nearest neighbors. A crossover of the length of localization is observed.
To analyze the crossover of the length of localization of the single-electron
states and properties of conductance of the thin polycrystalline film at low
temperature, we use a two-dimensional Anderson localization model, with the
random one-site electron charging energy for a single grain (dot), random
non-diagonal matrix elements, and random number of connections between the
neighboring grains. The results on the crossover behavior of localization
length of the single-electron states and characteristic properties of
conductance are presented in the region of parameters where the transition from
an insulator to a conductor regimes takes place.Comment: 8 pages, 3 figure
Non-Resonant Effects in Implementation of Quantum Shor Algorithm
We simulate Shor's algorithm on an Ising spin quantum computer. The influence
of non-resonant effects is analyzed in detail. It is shown that our ``''-method successfully suppresses non-resonant effects even for relatively
large values of the Rabi frequency.Comment: 11 pages, 13 figure
A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin
quantum computer using tellurium impurities in silicon. This approach to
quantum computing combines the well-developed silicon technology with expected
advances in MRFM.Comment: 9 pages, 1 figur
Multi-component lattice-Boltzmann model with interparticle interaction
A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815,
(1993)] lattice Boltzmann model for simulating fluids with multiple components
and interparticle forces is described in detail. Macroscopic equations
governing the motion of each component are derived by using Chapman-Enskog
method. The mutual diffusivity in a binary mixture is calculated analytically
and confirmed by numerical simulation. The diffusivity is generally a function
of the concentrations of the two components but independent of the fluid
velocity so that the diffusion is Galilean invariant. The analytically
calculated shear kinematic viscosity of this model is also confirmed
numerically.Comment: 18 pages, compressed and uuencoded postscript fil
- …