5 research outputs found

    Real-Time Non-Uniformity Correction without TEC for Microbolometer Array

    No full text
    This paper describes a new readout integrated circuit and non-uniformity correction (NUC) method that ensures that the bolometer array has low non-uniformity over a wide operating temperature range without a thermoelectric cooler (TEC). The proposed NUC minimizes the circuit and memory required for signal processing, making it suitable for compact and power-efficient portable infrared cameras. It corrects the aging phenomenon through start-up calibration and corrects non-uniformities without a TEC through calibration during operation mode. It minimizes the calibration process during operation mode and uses a pixel-level analog-to-digital converter to enable real-time NUC. A 0.18 mu m standard CMOS process is applied to the proposed NUC. The frame rate for calibration during the operation mode is approximately 14.3 Hz. The proposed NUC demonstrates excellent uniformity with a non-uniformity of less than 0.12% over a wide operating temperature range (-20 to 50 degrees C)

    Current Input Pixel-Level ADC with High SNR and Wide Dynamic Range for a Microbolometer

    No full text
    A readout circuit incorporating a pixel-level analog-to-digital converter (ADC) is studied for two-dimensional medium wavelength infrared microbolometer arrays. The signal-to-noise ratio (SNR) and charge handling capacity of the unit cell circuit are improved by using the current input pixel-level ADC. The charge handling capacity of the integrator is appropriately extended to maximize the integration time regardless of the magnitude of the input current and low power supply voltage. The readout circuit was fabricated using a 0.35-μm 2-poly 4-metal CMOS process for a 640 × 512 array with a pixel size of 40 μm × 40 μm. The peak SNR and dynamic range are 77.1 and 80.1 dB, respectively, with a power consumption of 0.62 μW per pixel

    Nonuniformity-Immune Read-In Integrated Circuit for Infrared Sensor Testing Systems

    No full text
    In this study, a novel IR projector driver that can minimize nonuniformity in electric circuits, using a dual-current-programming structure, is proposed to generate high-quality infrared (IR) scenes for accurate sensor evaluation. Unlike the conventional current-mode structure, the proposed system reduces pixel-to-pixel nonuniformity by assigning two roles (data sampling and current driving) to a single transistor. A prototype of the proposed circuit was designed and fabricated using the SK-Hynix 0.18 µm CMOS process, and its performance was analyzed using post-layout simulation data. It was verified that nonuniformity, which is defined as the standard deviation divided by the mean radiance, could be reduced from 21% to less than 0.1%

    N-terminus-independent activation of c-Src via binding to a tetraspan(in) TM4SF5 in hepatocellular carcinoma is abolished by the TM4SF5 C-terminal peptide application

    No full text
    Active c-Src non-receptor tyrosine kinase localizes to the plasma membrane via N-terminal lipid modification. Membranous c-Src causes cancer initiation and progression. Even though transmembrane 4 L six family member 5 (TM4SF5), a tetraspan(in), can be involved in this mechanism, the molecular and structural influence of TM4SF5 on c-Src remains unknown. Methods: Here, we investigated molecular and structural details by which TM4SF5 regulated c-Src devoid of its N-terminus and how cell-penetrating peptides were able to interrupt c-Src activation via interference of c-Src-TM4SF5 interaction in hepatocellular carcinoma models. Results: The TM4SF5 C-terminus efficiently bound the c-Src SH1 kinase domain, efficiently to the inactively-closed form. The complex involved protein tyrosine phosphatase 1B able to dephosphorylate Tyr530. The c-Src SH1 domain alone, even in a closed form, bound TM4SF5 to cause c-Src Tyr419 and FAK Y861 phosphorylation. Homology modeling and molecular dynamics simulation studies predicted the directly interfacing residues, which were further validated by mutational studies. Cell penetration of TM4SF5 C-terminal peptides blocked the interaction of TM4SF5 with c-Src and prevented c-Src-dependent tumor initiation and progression in vivo. Conclusions: Collectively, these data demonstrate that binding of the TM4SF5 C-terminus to the kinase domain of inactive c-Src leads to its activation. Because this binding can be abolished by cell-penetrating peptides containing the TM4SF5 C-terminus, targeting this direct interaction may be an effective strategy for developing therapeutics that block the development and progression of hepatocellular carcinoma.Y

    Lysyl-tRNA synthetase–expressing colon spheroids induce M2 macrophage polarization to promote metastasis

    No full text
    Lysyl-tRNA synthetase (KRS) functions canonically in cytosolic translational processes. However, KRS is highly expressed in colon cancer, and localizes to distinct cellular compartments upon phosphorylations (i.e., the plasma membranes after T52 phosphorylation and the nucleus after S207 phosphorylation), leading to probably alternative noncanonical functions. It is unknown how other subcellular KRSs crosstalk with environmental cues during cancer progression. Here, we demonstrate that the KRS-dependent metastatic behavior of colon cancer spheroids within 3D gels requires communication between cellular molecules and extracellular soluble factors and neighboring cells. Membranous KRS and nuclear KRS were found to participate in invasive cell dissemination of colon cancer spheroids in 3D gels. Cancer spheroids secreted GAS6 via a KRS-dependent mechanism and caused the M2 polarization of macrophages, which activated the neighboring cells via secretion of FGF2/GROα/M-CSF to promote cancer dissemination under environmental remodeling via fibroblast-mediated laminin production. Analyses of tissues from clinical colon cancer patients and Krs-/+ animal models for cancer metastasis supported the roles of KRS, GAS6, and M2 macrophages in KRS-dependent positive feedback between tumors and environmental factors. Altogether, KRS in colon cancer cells remodels the microenvironment to promote metastasis, which can thus be therapeutically targeted at these bidirectional KRS-dependent communications of cancer spheroids with environmental cues
    corecore