952 research outputs found

    On stochasticity in nearly-elastic systems

    Full text link
    Nearly-elastic model systems with one or two degrees of freedom are considered: the system is undergoing a small loss of energy in each collision with the "wall". We show that instabilities in this purely deterministic system lead to stochasticity of its long-time behavior. Various ways to give a rigorous meaning to the last statement are considered. All of them, if applicable, lead to the same stochasticity which is described explicitly. So that the stochasticity of the long-time behavior is an intrinsic property of the deterministic systems.Comment: 35 pages, 12 figures, already online at Stochastics and Dynamic

    Entropy and Hausdorff Dimension in Random Growing Trees

    Full text link
    We investigate the limiting behavior of random tree growth in preferential attachment models. The tree stems from a root, and we add vertices to the system one-by-one at random, according to a rule which depends on the degree distribution of the already existing tree. The so-called weight function, in terms of which the rule of attachment is formulated, is such that each vertex in the tree can have at most K children. We define the concept of a certain random measure mu on the leaves of the limiting tree, which captures a global property of the tree growth in a natural way. We prove that the Hausdorff and the packing dimension of this limiting measure is equal and constant with probability one. Moreover, the local dimension of mu equals the Hausdorff dimension at mu-almost every point. We give an explicit formula for the dimension, given the rule of attachment

    Transfer Entropy as a Log-likelihood Ratio

    Full text link
    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic chi-squared distribution is established for the transfer entropy estimator. The result generalises the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense

    Spectral analysis of deformed random networks

    Full text link
    We study spectral behavior of sparsely connected random networks under the random matrix framework. Sub-networks without any connection among them form a network having perfect community structure. As connections among the sub-networks are introduced, the spacing distribution shows a transition from the Poisson statistics to the Gaussian orthogonal ensemble statistics of random matrix theory. The eigenvalue density distribution shows a transition to the Wigner's semicircular behavior for a completely deformed network. The range for which spectral rigidity, measured by the Dyson-Mehta Δ3\Delta_3 statistics, follows the Gaussian orthogonal ensemble statistics depends upon the deformation of the network from the perfect community structure. The spacing distribution is particularly useful to track very slight deformations of the network from a perfect community structure, whereas the density distribution and the Δ3\Delta_3 statistics remain identical to the undeformed network. On the other hand the Δ3\Delta_3 statistics is useful for the larger deformation strengths. Finally, we analyze the spectrum of a protein-protein interaction network for Helicobacter, and compare the spectral behavior with those of the model networks.Comment: accepted for publication in Phys. Rev. E (replaced with the final version

    Multivariate Granger Causality and Generalized Variance

    Get PDF
    Granger causality analysis is a popular method for inference on directed interactions in complex systems of many variables. A shortcoming of the standard framework for Granger causality is that it only allows for examination of interactions between single (univariate) variables within a system, perhaps conditioned on other variables. However, interactions do not necessarily take place between single variables, but may occur among groups, or "ensembles", of variables. In this study we establish a principled framework for Granger causality in the context of causal interactions among two or more multivariate sets of variables. Building on Geweke's seminal 1982 work, we offer new justifications for one particular form of multivariate Granger causality based on the generalized variances of residual errors. Taken together, our results support a comprehensive and theoretically consistent extension of Granger causality to the multivariate case. Treated individually, they highlight several specific advantages of the generalized variance measure, which we illustrate using applications in neuroscience as an example. We further show how the measure can be used to define "partial" Granger causality in the multivariate context and we also motivate reformulations of "causal density" and "Granger autonomy". Our results are directly applicable to experimental data and promise to reveal new types of functional relations in complex systems, neural and otherwise.Comment: added 1 reference, minor change to discussion, typos corrected; 28 pages, 3 figures, 1 table, LaTe

    A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise

    Full text link
    We prove a functional non-central limit theorem for jump-diffusions with periodic coefficients driven by strictly stable Levy-processes with stability index bigger than one. The limit process turns out to be a strictly stable Levy process with an averaged jump-measure. Unlike in the situation where the diffusion is driven by Brownian motion, there is no drift related enhancement of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit

    Spectral Analysis of Multi-dimensional Self-similar Markov Processes

    Full text link
    In this paper we consider a discrete scale invariant (DSI) process {X(t),tR+}\{X(t), t\in {\bf R^+}\} with scale l>1l>1. We consider to have some fix number of observations in every scale, say TT, and to get our samples at discrete points αk,kW\alpha^k, k\in {\bf W} where α\alpha is obtained by the equality l=αTl=\alpha^T and W={0,1,...}{\bf W}=\{0, 1,...\}. So we provide a discrete time scale invariant (DT-SI) process X()X(\cdot) with parameter space {αk,kW}\{\alpha^k, k\in {\bf W}\}. We find the spectral representation of the covariance function of such DT-SI process. By providing harmonic like representation of multi-dimensional self-similar processes, spectral density function of them are presented. We assume that the process {X(t),tR+}\{X(t), t\in {\bf R^+}\} is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally we find the spectral density matrix of such DT-SIM process and show that its associated TT-dimensional self-similar Markov process is fully specified by {RjH(1),RjH(0),j=0,1,...,T1}\{R_{j}^H(1),R_{j}^H(0),j=0, 1,..., T-1\} where RjH(τ)R_j^H(\tau) is the covariance function of jjth and (j+τ)(j+\tau)th observations of the process.Comment: 16 page

    Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. III: potential function in local stochastic dynamics and in steady state of Boltzmann-Gibbs type distribution function

    Full text link
    From a logic point of view this is the third in the series to solve the problem of absence of detailed balance. This paper will be denoted as SDS III. The existence of a dynamical potential with both local and global meanings in general nonequilibrium processes has been controversial. Following an earlier explicit construction by one of us (Ao, J. Phys. {\bf A37}, L25 '04, arXiv:0803.4356, referred to as SDS II), in the present paper we show rigorously its existence for a generic class of situations in physical and biological sciences. The local dynamical meaning of this potential function is demonstrated via a special stochastic differential equation and its global steady-state meaning via a novel and explicit form of Fokker-Planck equation, the zero mass limit. We also give a procedure to obtain the special stochastic differential equation for any given Fokker-Planck equation. No detailed balance condition is required in our demonstration. For the first time we obtain here a formula to describe the noise induced shift in drift force comparing to the steady state distribution, a phenomenon extensively observed in numerical studies. The comparison to two well known stochastic integration methods, Ito and Stratonovich, are made ready. Such comparison was made elsewhere (Ao, Phys. Life Rev. {\bf 2} (2005) 117. q-bio/0605020).Comment: latex. 13 page

    Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space

    Full text link
    The theory of Schroedinger bridges for diffusion processes is extended to classical and quantum discrete-time Markovian evolutions. The solution of the path space maximum entropy problems is obtained from the a priori model in both cases via a suitable multiplicative functional transformation. In the quantum case, nonequilibrium time reversal of quantum channels is discussed and space-time harmonic processes are introduced.Comment: 34 page

    Measured quantum probability distribution functions for Brownian motion

    Full text link
    The quantum analog of the joint probability distributions describing a classical stochastic process is introduced. A prescription is given for constructing the quantum distribution associated with a sequence of measurements. For the case of quantum Brownian motion this prescription is illustrated with a number of explicit examples. In particular it is shown how the prescription can be extended in the form of a general formula for the Wigner function of a Brownian particle entangled with a heat bath.Comment: Phys. Rev. A, in pres
    corecore