726 research outputs found

    Differences in Clinical Outcomes Between Patients With ST-Elevation Versus Non-ST-Elevation Acute Myocardial Infarction in Korea

    Get PDF
    In Korea, the incidence of acute myocardial infarction has been increasing rapidly. Twelve-month clinical outcomes for 13,133 patients with acute myocardial infarction enrolled in the nationwide prospective Korea Acute Myocardial Infarction Registry study were analyzed according to the presence or absence of ST-segment elevation. Patients with ST-segment elevation myocardial infarction (STEMI) were younger, more likely to be men and smokers, and had poorer left ventricular function with a higher incidence of cardiac death compared to patients with non-ST-segment elevation myocardial infarction (NSTEMI). NSTEMI patients had a higher prevalence of 3-vessel and left main coronary artery disease with complex lesions, and were more likely to have co-morbidities. The in-hospital and 1-month survival rates were higher in NSTEMI patients than in STEMI patients. However, 12-month survival rates was not different between the two groups. In conclusion, NSTEMI patients have worse clinical outcomes than STEMI patients, and therefore should be treated more intensively during clinical follow-up

    Expression of GA733-Fc Fusion Protein as a Vaccine Candidate for Colorectal Cancer in Transgenic Plants

    Get PDF
    The tumor-associated antigen GA733 is a cell-surface glycoprotein highly expressed in colorectal carcinomas. In this study, 3 recombinant genes were constructed as follows: GA733 tagged to the ER retention sequence KDEL (GA733K), GA733 fused to the immunoglobulin Fc fragment (GA733-Fc), and GA733-Fc fused to the ER retention sequence (GA733-FcK). Agrobacterium-mediated transformation was used to generate transgenic plants expressing recombinant genes. The presence of transgenes was confirmed by genomic PCR. Western blot, confocal immunofluorescence, and sandwich ELISA showed the expression of recombinant proteins. The stability, flexibility, and bioactivity of recombinant proteins were analyzed and demonstrated through N-glycosylation analysis, animal trials, and sera ELISA. Our results suggest that the KDEL retained proteins in ER with oligomannose glycan structure and enhanced protein accumulation level. The sera of mice immunized with GA733-FcK purified from plants contained immunoglobulins which were at least as efficient as the mammalian-derived GA733-Fc at recognizing human colorectal cancer cell lines. Thus, a plant system can be used to express the KDEL fusion protein with oligomannose glycosylation, and this protein induces an immune response which is comparable to non-KDEL-tagged, mammalian-derived proteins

    Beclin 1 functions as a negative modulator of MLKL oligomerisation by integrating into the necrosome complex

    Get PDF
    Necroptosis is a form of regulated cell death caused by formation of the necrosome complex. However, the factors modulating this process and the systemic pathophysiological effects of necroptosis are yet to be understood. Here, we identified that Beclin 1 functions as an anti-necroptosis factor by being recruited into the necrosome complex upon treatment with TNF alpha, Smac mimetic, and pan-caspase inhibitor and by repressing MLKL oligomerisation, thus preventing the disruption of the plasma membrane. Cells ablated or knocked-out for Beclin 1 become sensitised to necroptosis in an autophagy-independent manner without affecting the necrosome formation itself. Interestingly, the recruitment of Beclin 1 into the necrosome complex is dependent on the activation and phosphorylation of MLKL. Biochemically, the coiled-coil domain (CCD) of Beclin 1 binds to the CCD of MLKL, which restrains the oligomerisation of phosphorylated MLKL. Finally, Beclin 1 depletion was found to promote necroptosis in leukaemia cells and enhance regression of xenografted-tumour upon treatment with Smac mimetics and caspase inhibitors. These results suggest that Beclin 1 functions as a negative regulator in the execution of necroptosis by suppressing MLKL oligomerisation

    A Case of Crohn's Disease with Improvement after Azathioprine-Induced Pancytopenia

    Get PDF
    The immunosuppressant azathioprine (AZA) is widely used in the treatment of inflammatory bowel disease (IBD) for both inducing and maintaining remission. However, the adverse effects of AZA can often necessitate a dose reduction or discontinuation. Bone marrow suppression is one of the most serious complications with AZA treatment. On the other hand, some reports have suggested that neutropenia during AZA therapy reduced the relapse rates of IBD patients, and there have been some cases where eradication of the sensitized leukocytes by leukapheresis or bone marrow transplantation improved the IBD, which may explain the relevant role of neutropenia in controlling disease activity. This report describes the case of a 22-year-old male patient who had Crohn's colitis and complicated perianal fistulas that required immunosuppression; he achieved endoscopically determined remission and showed accelerated mucosal healing as well as clinical remission following the AZA-induced pancytopenia

    Isolated Weakness of Middle, Ring, and Little Fingers due to a Small Cortical Infarction in the Medial Precentral Gyrus

    Get PDF
    Small cortical strokes can produce predominant isolated weakness in a particular group of fingers: radial or ulnar. The traditional views are of point-to-point representations of each finger to neurons located in the precentral gyrus of the motor cortex such that the neurons of the radial fingers are located laterally and those of the ulnar fingers are located medially. We present a case of isolated weakness of middle, ring, and little fingers due to a small cortical infarction in the medial precentral gyrus

    Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells.

    Get PDF
    Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3'UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1.This research was supported by a grant of the Korea–UK Collaborative Alzheimer's Disease Research Project by Ministry of Health & Welfare, Republic of Korea (A120196, HI14C1913) and was supported by the Basic Science Research Program of the National Research Foundation, Republic of Korea (2014R1A2A1A11053431). We are grateful to Wellcome Trust, Principal Research Fellowship to DCR (095317/Z/11/Z)This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.bbagrm.2015.10.01
    corecore