43 research outputs found

    The Attrition of Young Physician-Scientists: Problems and Potential Solutions

    Get PDF
    Physician-scientists have played a prominent role as thought leaders in American medicine over the past century. This group has produced many basic scientific advances and pioneered the translation of these advances into clinical practice. Now that we are in the post-genomic era, there is a greater need than ever for the continued participation of this group because of their unique ability to bridge the "bench to bedside." However, the number of physicians pursuing this career is static and their average age is rising. Recent data indicate that the many benefits of this career path are seen as being outweighed by so many negative factors, as to prompt the question, "Is this a career that a reasonable person should undertake in 2007 and beyond?" The following analysis suggests that the current answer is "no." We have identified the lack of professional security as a major factor that prompts young physicians to abandon the physician-scientist track. Because this problem has not been sufficiently emphasized, we believe current efforts are unlikely to reverse this disturbing trend. We propose strategies that seek to address this problem and help sustain young physician-scientists at career transition points at which they are most vulnerable to give up

    Molecular Basis and Differentiation-Associated Alterations of Anion Secretion in Human Duodenal Enteroid Monolayers

    Get PDF
    Background & Aims: Human enteroids present a novel tool to study human intestinal ion transport physiology and pathophysiology. The present study describes the contributions of Cl- and HCO3 - secretion to total cyclic adenosine monophosphate (cAMP)-stimulated electrogenic anion secretion in human duodenal enteroid monolayers and the relevant changes after differentiation. Methods: Human duodenal enteroids derived from 4 donors were grown as monolayers and differentiated by a protocol that includes the removal of Wnt3A, R-spondin1, and SB202190 for 5 days. The messenger RNA level and protein expression of selected ion transporters and carbonic anhydrase isoforms were determined by quantitative real-time polymerase chain reaction and immunoblotting, respectively. Undifferentiated and differentiated enteroid monolayers were mounted in the Ussing chamber/voltage-current clamp apparatus, using solutions that contained as well as lacked Cl- and HCO3 -/CO2, to determine the magnitude of forskolin-induced short-circuit current change and its sensitivity to specific inhibitors that target selected ion transporters and carbonic anhydrase(s). Results: Differentiation resulted in a significant reduction in the messenger RNA level and protein expression of cystic fibrosis transmembrane conductance regulator, (CFTR) Na+/K+/2Cl- co-transporter 1 (NKCC1), and potassium channel, voltage gated, subfamily E, regulatory subunit 3 (KCNE3); and, conversely, increase of down-regulated-in-adenoma (DRA), electrogenic Na+/HCO3 - co-transporter 1 (NBCe1), carbonic anhydrase 2 (CA2), and carbonic anhydrase 4 (CA4). Both undifferentiated and differentiated enteroids showed active cAMP-stimulated anion secretion that included both Cl- and HCO3 - secretion as th

    Differential association of the Na+/H+ exchanger regulatory factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3

    Get PDF
    Background/Aims: Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods: Detergent resistant membranes ('lipid rafts') were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3 - mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results: NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions: The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs

    Human enteroids: Preclinical models of non-inflammatory diarrhea

    Get PDF
    Researchers need an available and easy-to-use model of the human intestine to better understand human intestinal physiology and pathophysiology of diseases, and to offer an enhanced platform for developing drug therapy. Our work employs human enteroids derived from each of the major intestinal sections to advance understanding of several diarrheal diseases, including those caused by cholera, rotavirus and enterohemorrhagic Escherichia coli. An enteroid bank is being established to facilitate comparison of segmental, developmental, and regulatory differences in transport proteins that can influence therapy efficacy. Basic characterization of major ion transport protein expression, localization and function in the human enteroid model sets the stage to study the effects of enteric infection at the transport level, as well as to monitor potential responses to pharmacological intervention

    Refractory Lymphocytic Enterocolitis and Tumor Necrosis Factor Antagonist Therapy

    No full text
    BACKGROUND & AIMS: Lymphocytic enterocolitis is a malabsorptive syndrome characterized by severe small-bowel vinous abnormality and crypt hyperplasia and dense infiltrate of lymphocytes throughout the gastrointestinal tract. METHODS: We present 2 patients with lymphocytic enterocolitis refractory to usual medical therapy who were treated with tumor necrosis factor antagonists. RESULTS: Both patients had clinical improvement in diarrheal symptoms and intestinal histologic abnormalities. CONCLUSIONS: Tumor necrosis factor-alpha antagonists such as infliximab or adalimumab may be a new treatment option for patients with severe refractory lymphocytic enterocolitis not responding to corticosteroids

    Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology

    No full text
    Identification of Lgr5 as the intestinal stem cell marker as well as the growth factors necessary to replicate adult intestinal stem cell division has led to the establishment of the methods to generate “indefinite” ex vivo primary intestinal epithelial cultures, termed “mini-intestines.” Primary cultures developed from isolated intestinal crypts or stem cells (termed enteroids/colonoids) and from inducible pluripotent stem cells (termed intestinal organoids) are being applied to study human intestinal physiology and pathophysiology with great expectations for translational applications, including regenerative medicine. Here we discuss the physiologic properties of these cultures, their current use in understanding diarrhea-causing host-pathogen interactions, and potential future applications
    corecore