28 research outputs found

    A Prospective Longitudinal Cohort to Investigate the Effects of Early Life Giardiasis on Growth and All Cause Diarrhea

    Get PDF
    Background. Growth stunting in children under 2 years of age in low-income countries is common. Giardia is a ubiquitous pathogen in this age group but studies investigating Giardia's effect on both growth and diarrhea have produced conflicting results

    Rapid assessment of tetanus vaccine-induced immunity in Bangladesh and the Gambia.

    Get PDF
    We have developed recombinant fragment C based rapid point of care dipstick devices to assess tetanus immunization status using plasma or whole blood. The devices demonstrated specificity of 0.90 and sensitivity of 0.90 (whole blood)/0.94 (plasma) at field sites in Bangladesh and The Gambia when compared to a commercial ELISA with the immune cut-off titer set as ≥0.1IU/mL

    IL-13 is a driver of COVID-19 severity

    Get PDF
    Immune dysregulation is characteristic of the more severe stages of SARS-CoV-2 infection. Understanding the mechanisms by which the immune system contributes to COVID-19 severity may open new avenues to treatment. Here, we report that elevated IL-13 was associated with the need for mechanical ventilation in 2 independent patient cohorts. In addition, patients who acquired COVID-19 while prescribed Dupilumab, a mAb that blocks IL-13 and IL-4 signaling, had less severe disease. In SARS-CoV-2–infected mice, IL-13 neutralization reduced death and disease severity without affecting viral load, demonstrating an immunopathogenic role for this cytokine. Following anti–IL-13 treatment in infected mice, hyaluronan synthase 1 (Has1) was the most downregulated gene, and accumulation of the hyaluronan (HA) polysaccharide was decreased in the lung. In patients with COVID-19, HA was increased in the lungs and plasma. Blockade of the HA receptor, CD44, reduced mortality in infected mice, supporting the importance of HA as a pathogenic mediator. Finally, HA was directly induced in the lungs of mice by administration of IL-13, indicating a new role for IL-13 in lung disease. Understanding the role of IL-13 and HA has important implications for therapy of COVID-19 and, potentially, other pulmonary diseases. IL-13 levels were elevated in patients with severe COVID-19. In a mouse model of the disease, IL-13 neutralization reduced the disease and decreased lung HA deposition. Administration of IL-13–induced HA in the lung. Blockade of the HA receptor CD44 prevented mortality, highlighting a potentially novel mechanism for IL-13–mediated HA synthesis in pulmonary pathology

    Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis

    No full text
    Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases

    Early Life Interventions for Childhood Growth and Development in Tanzania (ELICIT): a protocol for a randomised factorial, double-blind, placebo-controlled trial of azithromycin, nitazoxanide and nicotinamide

    No full text
    INTRODUCTION: In many developing areas in the world, a high burden of enteric pathogens in early childhood are associated with growth deficits. The tryptophan-kynurenine-niacin pathway has been linked to enteric inflammatory responses to intestinal infections. However, it is not known in these settings whether scheduled antimicrobial intervention to reduce subclinical enteric pathogen carriage or repletion of the tryptophan-kynurenine-niacin pathway improves linear growth and development.METHODS AND ANALYSIS: We are conducting a randomised, placebo-controlled, factorial intervention trial in the rural setting of Haydom, Tanzania. We are recruiting 1188 children within the first 14 days of life, who will be randomised in a 2×2 factorial design to administration of antimicrobials (azithromycin and nitazoxanide, randomised together) and nicotinamide. The nicotinamide is administered as a daily oral dose, which for breast-feeding children aged 0-6 months is given to the mother and for children aged 6-18 months is given to the child directly. Azithromycin is given to the child as a single oral dose at months 6, 9, 12 and 15; nitazoxanide is given as a 3-day course at months 12 and 15. Mother/child pairs are followed via monthly in-home visits. The primary outcome is the child's length-for-age Z-score at 18 months. Secondary outcomes for the child include additional anthropometry measures; stool pathogen burden and bacterial microbiome; systemic and enteric inflammation; blood metabolomics, growth factors, inflammation and nutrition; hydrogen breath assessment to estimate small-intestinal bacterial overgrowth and assessment of cognitive development. Secondary outcomes for the mother include breastmilk content of nicotinamide, other vitamins and amino acids; blood measures of tryptophan-kynurenine-niacin pathway and stool pathogens.ETHICS AND DISSEMINATION: This trial has been approved by the Tanzanian National Institute for Medical Research, the Tanzanian FDA and the University of Virginia IRB. Findings will be presented at national and international conferences and published in peer-review journals.PROTOCOL VERSION: 5.0, 4 December 2017.PROTOCOL SPONSOR: Haydom Lutheran Hospital, Haydom, Manyara, Tanzania.TRIAL REGISTRATION NUMBER: NCT03268902; Pre-results.</p

    Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl−/1HCO3− exchange

    No full text
    The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl−/1HCO3− exchange suggests a required revision of classical concepts of electroneutral Cl− transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl−/HCO3− activity on apical membrane potential (Va) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl−/(OH−)HCO3− exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo 36Cl− fluxes and microfluorometry revealed that cecal Cl−/HCO3− exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline Va of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl− substitution. Subsequent studies indicated that Cl−-dependent Va depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl− for extracellular HCO3− is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl− removal or pharmacological blockade. Further, Dra-dependent 36Cl− efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl−/1HCO3− exchange; and 2) acute induction of Dra Cl−/HCO3− exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO3− secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease

    Multi-institutional experience with COVID-19 convalescent plasma in children

    No full text
    BACKGROUND AND OBJECTIVES: Convalescent COVID-19 plasma (CCP) was developed and used worldwide as a treatment option by supplying passive immunity. Adult studies suggest administering high-titer CCP early in the disease course of patients who are expected to be antibody-negative; however, pediatric experience is limited. We created a multi-institutional registry to characterize pediatric patients (\u3c18 years) who received CCP and to assess the safety of this intervention. METHODS: A REDCap survey was distributed. The registry collected de-identified data including demographic information (age, gender, and underlying conditions), COVID-19 disease features and concurrent treatments, CCP transfusion and safety events, and therapy response. RESULTS: Ninety-five children received CCP: 90 inpatients and 5 outpatients, with a median age of 10.2 years (range 0-17.9). They were predominantly Latino/Hispanic and White. The most frequent underlying medical conditions were chronic respiratory disease, immunosuppression, obesity, and genetic syndromes. CCP was primarily given as a treatment (95%) rather than prophylaxis (5%). Median total plasma dose administered and transfusion rates were 5.0 ml/kg and 2.6 ml/kg/h, respectively. The transfusions were well-tolerated, with 3 in 115 transfusions reporting mild reactions. No serious adverse events were reported. Severity scores decreased significantly 7 days after CCP transfusion or at discharge. Eighty-five patients (94.4%) survived to hospital discharge. All five outpatients survived to 60 days. CONCLUSIONS: CCP was found to be safe and well-tolerated in children. CCP was frequently given concurrently with other COVID-19-directed treatments with improvement in clinical severity scores ≥7 days after CCP, but efficacy could not be evaluated in this study

    Effect of scheduled antimicrobial and nicotinamide treatment on linear growth in children in rural Tanzania: factorial randomized, double-blind, placebo-controlled trial

    No full text
    Background: stunting among children in low-resource settings is associated with enteric pathogen carriage and micronutrient deficiencies. Our goal was to test whether administration of scheduled antimicrobials and daily nicotinamide improved linear growth in a region with a high prevalence of stunting and enteric pathogen carriage. Methods and findings: we performed a randomized, 2 × 2 factorial, double-blind, placebo-controlled trial in the area around Haydom, Tanzania. Mother–child dyads were enrolled by age 14 days and followed with monthly home visits and every 3-month anthropometry assessments through 18 months. Those randomized to the antimicrobial arm received 2 medications (versus corresponding placebos): azithromycin (single dose of 20 mg/kg) at months 6, 9, 12, and 15 and nitazoxanide (3-day course of 100 mg twice daily) at months 12 and 15. Those randomized to nicotinamide arm received daily nicotinamide to the mother (250 mg pills months 0 to 6) and to the child (100 mg sachets months 6 to 18). Primary outcome was length-for-age z-score (LAZ) at 18 months in the modified intention-to-treat group. Between September 5, 2017 and August 31, 2018, 1,188 children were randomized, of whom 1,084 (n = 277 placebo/placebo, 273 antimicrobial/placebo, 274 placebo/nicotinamide, and 260 antimicrobial/ nicotinamide) were included in the modified intention-to-treat analysis. The study was suspended for a 3-month period by the Tanzanian National Institute for Medical Research (NIMR) because of concerns related to the timing of laboratory testing and the total number of serious adverse events (SAEs); this resulted in some participants receiving their final study assessment late. There was a high prevalence of stunting overall (533/1,084, 49.2%). Mean 18-month LAZ did not differ between groups for either intervention (mean LAZ with 95% confidence interval [CI]: antimicrobial: −2.05 CI −2.13, −1.96, placebo: −2.05 CI −2.14, −1.97; mean difference: 0.01 CI −0.13, 0.11, p = 0.91; nicotinamide: −2.06 CI −2.13, −1.95, placebo: −2.04 CI −2.14, −1.98, mean difference 0.03 CI −0.15, 0.09, p = 0.66). There was no difference in LAZ for either intervention after adjusting : for possible confounders (baseline LAZ, age in days at 18-month measurement, ward, hospital birth, birth month, years of maternal education, socioeconomic status (SES) quartile category, sex, whether the mother was a member of the Datoga tribe, and mother’s height). Adverse events (AEs) and SAEs were overall similar between treatment groups for both the nicotinamide and antimicrobial interventions. Key limitations include the absence of laboratory measures of pathogen carriage and nicotinamide metabolism to provide context for the negative findings. Conclusions: in this study, we observed that neither scheduled administration of azithromycin and nitazoxanide nor daily provision of nicotinamide was associated with improved growth in this resource-poor setting with a high force of enteric infections. Further research remains critical to identify interventions toward improved earl childhood growth in challenging conditions. </p

    Baseline characteristics of study participants in the Early Life Interventions for Childhood Growth and Development in Tanzania (ELICIT) Trial

    No full text
    Recurrent enteric infections and micronutrient deficiencies, including deficiencies in the tryptophan-kynurenine-niacin pathway, have been associated with environmental enteric dysfunction, potentially contributing to poor child growth and development. We are conducting a randomized, placebo-controlled, 2 × 2 factorial interventional trial in a rural population in Haydom, Tanzania, to determine the effect of 1) antimicrobials (azithromycin and nitazoxanide) and/or 2) nicotinamide, a niacin vitamer, on attained length at 18 months. Mother/infant dyads were enrolled within 14 days of the infant's birth from September 2017 to September 2018, with the follow-up to be completed in February 2020. Here, we describe the baseline characteristics of the study cohort, risk factors for low enrollment weight, and neonatal adverse events (AEs). Risk factors for a low enrollment weight included being a firstborn child (-0.54 difference in weight-for-age z-score [WAZ] versus other children, 95% CI: -0.71, -0.37), lower socioeconomic status (-0.28, 95% CI: -0.43, -0.12 difference in WAZ), and birth during the preharvest season (November to March) (-0.22, 95% CI: -0.33, -0.11 difference in WAZ). The most common neonatal serious AEs were respiratory tract infections and neonatal sepsis (2.2 and 1.4 events per 100 child-months, respectively). The study cohort represents a high-risk population for whom interventions to improve child growth and development are urgently needed. Further analyses are needed to understand the persistent impacts of seasonal malnutrition and the interactions between seasonality, socioeconomic status, and the study interventions.</p
    corecore