1,163 research outputs found

    Rerepresenting and Restructuring Domain Theories: A Constructive Induction Approach

    Full text link
    Theory revision integrates inductive learning and background knowledge by combining training examples with a coarse domain theory to produce a more accurate theory. There are two challenges that theory revision and other theory-guided systems face. First, a representation language appropriate for the initial theory may be inappropriate for an improved theory. While the original representation may concisely express the initial theory, a more accurate theory forced to use that same representation may be bulky, cumbersome, and difficult to reach. Second, a theory structure suitable for a coarse domain theory may be insufficient for a fine-tuned theory. Systems that produce only small, local changes to a theory have limited value for accomplishing complex structural alterations that may be required. Consequently, advanced theory-guided learning systems require flexible representation and flexible structure. An analysis of various theory revision systems and theory-guided learning systems reveals specific strengths and weaknesses in terms of these two desired properties. Designed to capture the underlying qualities of each system, a new system uses theory-guided constructive induction. Experiments in three domains show improvement over previous theory-guided systems. This leads to a study of the behavior, limitations, and potential of theory-guided constructive induction.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

    Full text link
    Regularization of ill-posed linear inverse problems via 1\ell_1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an 1\ell_1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to 1\ell_1-constraints, using a gradient method, with projection on 1\ell_1-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.Comment: 24 pages, 5 figures. v2: added reference, some amendments, 27 page

    Yet another breakdown point notion: EFSBP - illustrated at scale-shape models

    Full text link
    The breakdown point in its different variants is one of the central notions to quantify the global robustness of a procedure. We propose a simple supplementary variant which is useful in situations where we have no obvious or only partial equivariance: Extending the Donoho and Huber(1983) Finite Sample Breakdown Point, we propose the Expected Finite Sample Breakdown Point to produce less configuration-dependent values while still preserving the finite sample aspect of the former definition. We apply this notion for joint estimation of scale and shape (with only scale-equivariance available), exemplified for generalized Pareto, generalized extreme value, Weibull, and Gamma distributions. In these settings, we are interested in highly-robust, easy-to-compute initial estimators; to this end we study Pickands-type and Location-Dispersion-type estimators and compute their respective breakdown points.Comment: 21 pages, 4 figure

    Position and momentum observables on R and on R^3

    Full text link
    We characterize all position and momentum observables on R and on R^3. We study some of their operational properties and discuss their covariant joint observables.Comment: 18 page

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Time-frequency detection algorithm for gravitational wave bursts

    Get PDF
    An efficient algorithm is presented for the identification of short bursts of gravitational radiation in the data from broad-band interferometric detectors. The algorithm consists of three steps: pixels of the time-frequency representation of the data that have power above a fixed threshold are first identified. Clusters of such pixels that conform to a set of rules on their size and their proximity to other clusters are formed, and a final threshold is applied on the power integrated over all pixels in such clusters. Formal arguments are given to support the conjecture that this algorithm is very efficient for a wide class of signals. A precise model for the false alarm rate of this algorithm is presented, and it is shown using a number of representative numerical simulations to be accurate at the 1% level for most values of the parameters, with maximal error around 10%.Comment: 26 pages, 15 figures, to appear in PR

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    Compressed sensing imaging techniques for radio interferometry

    Get PDF
    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave background radiation, of particular interest for cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for publication in MNRAS. Changes includes: writing corrections, clarifications of arguments, figure update, and a new subsection 4.1 commenting on the exact compliance of radio interferometric measurements with compressed sensin

    Detection and imaging in strongly backscattering randomly layered media

    Get PDF
    Abstract. Echoes from small reflectors buried in heavy clutter are weak and difficult to distinguish from the medium backscatter. Detection and imaging with sensor arrays in such media requires filtering out the unwanted backscatter and enhancing the echoes from the reflectors that we wish to locate. We consider a filtering and detection approach based on the singular value decomposition of the local cosine transform of the array response matrix. The algorithm is general and can be used for detection and imaging in heavy clutter, but its analysis depends on the model of the cluttered medium. This paper is concerned with the analysis of the algorithm in finely layered random media. We obtain a detailed characterization of the singular values of the transformed array response matrix and justify the systematic approach of the filtering algorithm for detecting and refining the time windows that contain the echoes that are useful in imaging
    corecore