231 research outputs found

    Hemisphere-scale differences in conifer evolutionary dynamics

    Get PDF
    Fundamental differences in the distribution of oceans and landmasses in the Northern and Southern Hemispheres potentially impact patterns of biological diversity in the two areas. The evolutionary history of conifers provides an opportunity to explore these dynamics, because the majority of extant conifer species belong to lineages that have been broadly confined to the Northern or Southern Hemisphere during the Cenozoic. Incorporating genetic information with a critical review of fossil evidence, we developed an age-calibrated phylogeny sampling ∼80% of living conifer species. Most extant conifer species diverged recently during the Neogene within clades that generally were established during the later Mesozoic, but lineages that diversified mainly in the Southern Hemisphere show a significantly older distribution of divergence ages than their counterparts in the Northern Hemisphere. Our tree topology and divergence times also are best fit by diversification models in which Northern Hemisphere conifer lineages have higher rates of species turnover than Southern Hemisphere lineages. The abundance of recent divergences in northern clades may reflect complex patterns of migration and range shifts during climatic cycles over the later Neogene leading to elevated rates of speciation and extinction, whereas the scattered persistence of mild, wetter habitats in the Southern Hemisphere may have favored the survival of older lineages

    O(a^2) cutoff effects in lattice Wilson fermion simulations

    Get PDF
    In this paper we propose to interpret the large discretization artifacts affecting the neutral pion mass in maximally twisted lattice QCD simulations as O(a^2) effects whose magnitude is roughly proportional to the modulus square of the (continuum) matrix element of the pseudoscalar density operator between vacuum and one-pion state. The numerical size of this quantity is determined by the dynamical mechanism of spontaneous chiral symmetry breaking and turns out to be substantially larger than its natural magnitude set by the value of Lambda_QCD.Comment: 38 pages, 1 figure, 2 table

    On the Possibility of Large Axion Decay Constants

    Full text link
    The decay constant of the QCD axion is required by observation to be small compared to the Planck scale. In theories of "natural inflation," and certain proposed anthropic solutions of the cosmological constant problem, it would be interesting to obtain a large decay constant for axion-like fields from microscopic physics. String theory is the only context in which one can sensibly address this question. Here we survey a number of periodic fields in string theory in a variety of string vacua. In some examples, the decay constant can be parameterically larger than the Planck scale but the effective action then contains appreciable harmonics of order fA/Mpf_A/M_p. As a result, these fields are no better inflaton candidates than Planck scale axions.Comment: 17 pages, no figures, minor change mad

    Hadron Spectrum with Wilson fermions

    Get PDF
    We present results of a high statistics study of the quenched spectrum using Wilson fermions at β=6.0\beta=6.0 on 323×6432^3 \times 64 lattices. We calculate the masses of mesons and baryons composed of both degenerate and non-degenerate quarks. Using non-degenerate quark combinations allows us to study baryon mass splittings in detail. We find significant deviations from the lowest order chiral expansion, deviations that are consistent with the expectations of quenched chiral perturbation theory. We find that there is a 20\sim 20% systematic error in the extracted value of msm_s, depending on the meson mass ratio used to set its value. Using the largest estimate of msm_s we find that the extrapolated octet mass-splittings are in agreement with the experimental values, as is MΔMNM_\Delta - M_N, while the decuplet splittings are 30% smaller than experiment. Combining our results with data from the GF11 collaboration we find considerable ambiguity in the extrapolation to the continuum limit. Our preferred values are MN/Mρ=1.38(7)M_N / M_\rho = 1.38(7) and MΔ/Mρ=1.73(10)M_\Delta / M_\rho = 1.73(10), suggesting that the quenched approximation is good to only 1015\sim 10-15%. We also analyze the O(ma)O(ma) discretization errors in heavy quark masses.Comment: 52 pages. Tex. Modified "axis" source for figures also included. Needs macro packages lanlmac and epsf. Uses hyperbasics if available. Significant number of typographical errors correcte

    Annihilation, Rescattering, and CP Asymmetries in B Meson Decays

    Get PDF
    A number of BB meson decays may proceed only through participation of the spectator quark, whether through amplitudes proportional to fB/mBf_B/m_B or via rescattering from other less-suppressed amplitudes. An expected hierarchy of amplitudes in the absence of rescattering will be violated by rescattering corrections. Such violations could point the way toward channels in which final-state interactions could be important. Cases in which final state phases can lead to large CP asymmetries are pointed out.Comment: 9 page

    Precision Prediction for the Big-Bang Abundance of Primordial Helium

    Full text link
    Within the standard models of particle physics and cosmology we have calculated the big-bang prediction for the primordial abundance of \he to a theoretical uncertainty of less than 0.1 \pct (δYP<±0.0002)(\delta Y_P < \pm 0.0002), improving the current theoretical precision by a factor of 10. At this accuracy the uncertainty in the abundance is dominated by the experimental uncertainty in the neutron mean lifetime, τn=885.4±2.0sec\tau_n = 885.4 \pm 2.0 sec. The following physical effects were included in the calculation: the zero and finite-temperature radiative, Coulomb and finite-nucleon-mass corrections to the weak rates; order-α\alpha quantum-electrodynamic correction to the plasma density, electron mass, and neutrino temperature; and incomplete neutrino decoupling. New results for the finite-temperature radiative correction and the QED plasma correction were used. In addition, we wrote a new and independent nucleosynthesis code designed to control numerical errors to be less than 0.1\pct. Our predictions for the \EL[4]{He} abundance are presented in the form of an accurate fitting formula. Summarizing our work in one number, YP(η=5×1010)=0.2462±0.0004(expt)±<0.0002(theory) Y_P(\eta = 5\times 10^{-10}) = 0.2462 \pm 0.0004 (expt) \pm < 0.0002 (theory). Further, the baryon density inferred from the Burles-Tytler determination of the primordial D abundance, ΩBh2=0.019±0.001\Omega_B h^2 = 0.019\pm 0.001, leads to the prediction: YP=0.2464±0.0005(D/H)±<0.0002(theory)±0.0005(expt)Y_P = 0.2464 \pm 0.0005 (D/H) \pm < 0.0002 (theory) \pm 0.0005 (expt). This ``prediction'' and an accurate measurement of the primeval \he abundance will allow an important consistency test of primordial nucleosynthesis.Comment: Replaced fitting formulas - new versions differ by small but significant amount. Other minor changes. 30 pages, 17 figures, 5 table

    Effective chiral Lagrangians for spin-1 mesons

    Full text link
    The commonly used types of effective theory for vector mesons are reviewed and their relationships clarified. They are shown to correspond to different choices of field for spin-1 particles and the rules for transforming between them are described. The importance of respecting chiral symmetry is stressed. The choice of fields that transform homogeneously under the nonlinear realisation of chiral symmetry imposes no preconceptions about the types of coupling for the mesons. This representation thus provides a convenient framework for relating different theories. It is also used to elucidate the nature of the assumptions in specific hidden-gauge and massive Yang-Mills models that have been widely used.Comment: 46 pages (RevTeX

    The Distribution and Origins of Ancient Leprosy

    Get PDF
    Human leprosy is primarily caused by Mycobacterium leprae, but also by the related ‘M. lepromatosis’. Ancient leprosy can be recognised in archaeological materials by the paleopathology associated with multi-bacillary or lepromatous forms of the disease. Whole M. leprae genomes have been obtained from human skeletons, and diagnostic aDNA fragments have been recovered. The derived M. leprae phylogenies, based on single nucleotide polymorphisms, mirror past human migrations, as M. leprae is usually an obligate pathogen. The detection of M. leprae in historical leprosy cases is assisted by the hydrophobic M. leprae cell envelope, which is composed of unusual lipids that can be used as specific biomarkers. Lipid biomarkers are more stable than aDNA and can be detected directly without amplification. Indigenous human leprosy is extinct in Western Europe, but recently, both M. leprae and ‘M. lepromatosis’ were found in British red squirrels. Leprosy may also be found in nine-banded armadillos (Dasypus novemcinctus) where it can cause a zoonotic human infection. Certain leprosy-like diseases, caused by uncultivable species in cats, for example, may be related to M. leprae. The closest extant relatives of leprosy bacilli are probably members of the M. haemophilum taxon, emerging pathogens with genomic and lipid biomarker similarities

    QCD Sum Rules for the Isospin-Breaking Axial Correlator with Correct Chiral Behavior

    Get PDF
    We revisit the QCD sum-rule treatment of the isospin-breaking axial correlator in light of the recent claim that a previous treatment produced results incompatible with known chiral constraints. The source of the error in the previous analysis is identified, and a corrected version of the sum-rule treatment obtained. It is then shown that, using input from chiral perturbation theory, one may use the resulting sum rule to extract information on the leading chiral behavior of isospin-breaking parameters associated with the coupling of excited pseudoscalar resonances to the axial currents. A rather accurate extraction is possible for the case of the eta'. Demanding stability of the sum-rule analysis also allows us to improve the upper bound on the fourth-order low-energy constant, L_7.Comment: 20 pages (RevTeX), 1 figure (epsf

    The Brain Activity Map

    Get PDF
    Neuroscientists have made impressive advances in understanding the microscale function of single neurons and the macroscale activity of the human brain. One can probe molecular and biophysical aspects of individual neurons and also view the human brain in action with magnetic resonance imaging (MRI) or magnetoencephalography (MEG). However, the mechanisms of perception, cognition, and action remain mysterious because they emerge from the real-time interactions of large sets of neurons in densely interconnected, widespread neural circuits
    corecore