3,035 research outputs found

    Quantum power correction to the Newton law

    Full text link
    We have found the graviton contribution to the one-loop quantum correction to the Newton law. This correction results in interaction decreasing with distance as 1/r^3 and is dominated numerically by the graviton contribution. The previous calculations of this contribution to the discussed effect are demonstrated to be incorrect.Comment: 10 pages, 5 figures; numerical error corrected, few references adde

    Systematics of soft final state interactions in BB decay

    Get PDF
    By using very general and well established features of soft strong interactions we show, contrary to conventional expectations, that (i) soft final state interactions (FSI) do not disappear for large mBm_B, (ii) inelastic rescattering is expected to be the main source of soft FSI phases, and (iii) flavor off-diagonal FSI are suppressed by a power of mBm_B, but are quite likely to be significant at mB5m_B\simeq 5~GeV. We briefly discuss the influence of these interactions on tests of CP-violation and on theoretical calculations of weak decays.Comment: 11 pages, REVTeX, no figure

    Absorptive part of meson--baryon scattering amplitude and baryon polarization in chiral perturbation theory

    Full text link
    We compute the spin asymmetry and polarization of the final-state baryon in its rest frame in two-body meson--baryon low-energy scattering with unpolarized initial state, to lowest non-trivial order in BChPT. The required absorptive amplitudes are obtained analytically at one-loop level. We discuss the polarization results numerically for several meson--baryon processes. Even at low energies above threshold, where BChPT can reasonably be expected to be applicable, sizable values of polarization are found for some processes

    Final state rescattering as a contribution to BργB \to \rho \gamma

    Full text link
    We provide a new estimate of the long-distance component to the radiative transition BργB \to \rho \gamma. Our mechanism involves the soft-scattering of on-shell hadronic products of nonleptonic BB decay, as in the chain BρρργB \to \rho\rho \to \rho\gamma. We employ a phenomenological fit to scattering data to estimate the effect. The specific intermediate states considered here modify the BργB \to \rho \gamma decay rate at roughly the 585 \to 8% level, although the underlying effect has the potential to be larger. Contrary to other mechanisms of long distance physics which have been discussed in the literature, this yields a non-negligible modification of the B0ρ0γB^0 \to \rho^0 \gamma channel and hence will provide an uncertainty in the extraction of VtdV_{td}. This mechanism also affects the isospin relation between the rates for BργB^- \to \rho^-\gamma and B0ρ0γB^0 \to \rho^0 \gamma and may generate CP asymmetries at experimentally observable levels.Comment: 15 pages, RevTex, 3 figure

    The Mixed Vector Current Correlator <0|T(V^3_\mu V^8_\nu )|0> To Two Loops in Chiral Perturbation Theory

    Full text link
    The isospin-breaking correlator of the product of flavor octet vector currents, Vμ3V^3_\mu and Vν8V^8_\nu, Πμν38(q2)\Pi^{38}_{\mu\nu}(q^2) is computed to next-to-next- to-leading (two-loop) order in Chiral Perturbation Theory. Large corrections to both the magnitude and q2q^2-dependence of the one-loop result are found, and the reasons for the slow convergence of the chiral series for the correlator given. The two-loop expression involves a single O(q6){\cal O}(q^6) counterterm, present also in the two-loop expressions for Πμν33(q2)\Pi^{33}_{\mu\nu}(q^2) and Πμν88(q2)\Pi^{88}_{\mu\nu}(q^2), which counterterm contributes a constant to the scalar correlator Π38(q2)\Pi^{38}(q^2). The feasibility of extracting the value of this counterterm from other sources is discussed. Analysis of the slope of the correlator with respect to q2q^2 using QCD sum rules is shown to suggest that, even to two-loop order, the chiral series for the correlator may not yet be well-converged.Comment: 32 pages, uses REVTEX and epsfig.sty with 7 uuencoded figures. Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html Also available via anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-27.T181.p

    Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry

    Get PDF
    Recent attempts to detect the pion polarizability via analysis of γγππ\gamma\gamma\rightarrow\pi\pi measurements are examined. The connection between calculations based on dispersion relations and on chiral perturbation theory is established by matching the low energy chiral amplitude with that given by a full dispersive treatment. Using the values for the polarizability required by chiral symmetry, predicted and experimental cross sections are shown to be in agreement.Comment: 21 pages(+10 figures available on request), LATEX, UMHEP-38

    Remarks on the hadronic matrix elements relevant to the SUSY K-Kbar mixing amplitude

    Full text link
    We compute the 1-loop chiral corrections to the bag parameters which are needed for the discussion of the SUSY K-Kbar mixing problem in both finite and infinite volume. We then show how the bag parameters can be combined among themselves and with some auxiliary quantities and thus sensibly reduce the systematic errors due to chiral extrapolations as well as those due to finite volume artefacts present in the results obtained from lattice QCD. We also show that in some cases these advantages remain as such even after including the 2-loop chiral corrections. Similar discussion is also made for the K --> pi electro-weak penguin operators.Comment: 13 pages, 3 figures [added 1 reference and a discussion about the impact of the NNLO chiral corrections to the "golden ratios" (c.f. Sec.6)

    Factorization Contributions and the Breaking of the ΔI=1/2\Delta I=1/2 Rule in Weak ΛNρ\Lambda N\rho and ΣNρ\Sigma N\rho Couplings

    Full text link
    We compute the modified factorization contributions to the ΛNρ\Lambda\rightarrow N\rho and ΣNρ\Sigma\rightarrow N\rho couplings and demonstrate that these contributions naturally include ΔI=3/2\Delta I=3/2 terms which are comparable (0.4\simeq 0.4 to 0.8-0.8 times) in magnitude to the corresponding ΔI=1/2\Delta I=1/2 terms. As a consequence, we conclude that models which treat vector meson exchange contributions to the weak conversion process ΛNNN\Lambda N\rightarrow NN assuming such weak couplings to satisfy the ΔI=1/2\Delta I=1/2 rule are unlikely to be reliable.Comment: 13 pages, uses REVTEX Entire manuscript available as a ps file at http://www.physics.adelaide.edu.au/theory/home.html . Also available via anonymous ftp at ftp://adelphi.adelaide.edu.au/pub/theory/ADP-95-5.T172.ps To appear in Physical Review

    The weight for random quark masses

    Get PDF
    In theories in which the parameters of the low energy theory are not unique, perhaps having different values in different domains of the universe as is possible in some inflationary models, the fermion masses would be distributed with respect to some weight. In such a situation the specifics of the fermion masses do not have a unique explanation, yet the weight provides the visible remnant of the structure of the underlying theory. This paper introduces this concept of a weight for the distribution of masses and provides a quantitative estimate of it from the observed quarks and leptons. The weight favors light quark masses and appears roughly scale invariant (rho ~ 1/m). Some relevant issues, such as the running of the weight with scale and the possible effects of anthropic constraints, are also discussed.Comment: 35pages, 19 figure
    corecore