12 research outputs found

    Transcortical endoportal subchoroidal endoscope-assisted approach to the third ventricle: from virtual reality to anatomical laboratory

    No full text
    Surgical approaches to the third ventricle (TV) have always represented a technical challenge in neurosurgery. Virtual reality (VR) is attaining increasing relevance in training programs and preoperative planning. The aim of this study is to demonstrate the worthwhile mutual contribution of VR simulations and specimen dissections to develop a new surgical approach to the TV

    The Inflammatory Microenvironment in Vestibular Schwannoma

    No full text
    Abstract Vestibular schwannomas are tumors arising from the vestibulo-cochlear nerve at the cerebello-pontine angle. Their proximity to eloquent brainstem structures means that the pathology itself and the treatment thereof can be associated with significant morbidity. The vast majority of these tumors are sporadic, with the remainder arising as a result of the genetic syndrome Neurofibromatosis Type 2 or, more rarely, LZTR1-related schwannomatosis. The natural history of these tumors is extremely variable, with some tumors not displaying any evidence of growth, others demonstrating early, persistent growth and a small number growing following an extended period of indolence. Emerging evidence now suggests that far from representing Schwann cell proliferation only, the tumor microenvironment is complex, with inflammation proposed to play a key role in their growth. In this review, we provide an overview of this new evidence, including the role played by immune cell infiltration, the underlying molecular pathways involved and biomarkers for detecting this inflammation in vivo. Given the limitations of current treatments, there is a pressing need for novel therapies to aid in the management of this condition, and we conclude by proposing areas for future research, that could lead to the development of therapies targeted towards inflammation in vestibular schwannoma

    Beyond Antoni:A Surgeon's Guide to the Vestibular Schwannoma Microenvironment

    No full text
    Introduction  Vestibular schwannomas (VS) are histologically benign tumors arising from cranial nerve VIII. Far from a homogenous proliferation of Schwann cells, mounting evidence has highlighted the complex nature of the inflammatory microenvironment in these tumors. Methods  A review of the literature pertaining to inflammation, inflammatory molecular pathways, and immune-related therapeutic targets in VS was performed. Relevant studies published up to June 2020 were identified based on a literature search in the PubMed and MEDLINE databases and the findings were synthesized into a concise narrative review of the topic. Results  The VS microenvironment is characterized by a dense infiltrate of inflammatory cells, particularly macrophages. Significantly higher levels of immune cell infiltration are observed in growing versus static tumors, and there is a demonstrable interplay between inflammation and angiogenesis in growing VS. While further mechanistic studies are required to ascertain the exact role of inflammation in angiogenesis, tumor growth, and Schwann cell control, we are beginning to understand the key molecular pathways driving this inflammatory microenvironment, and how these processes can be monitored and targeted in vivo . Conclusion  Observational research has revealed a complex and heterogeneous tumor microenvironment in VS. The functional landscape and roles of macrophages and other immune cells in the VS inflammatory infiltrate are, however, yet to be established. The antiangiogenic drug bevacizumab has shown the efficacy of targeted molecular therapies in VS and there is hope that agents targeting another major component of the VS microenvironment, inflammation, will also find a place in their future management
    corecore