4,382 research outputs found

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Hysteresis effects in rotating Bose-Einstein condensates

    Full text link
    We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic trap. We find that the number of vortices and angular momentum attained by the condensate depends upon the rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena in this system.Comment: 16 pages, 7 figures; revised after referees' report

    Thermodynamic inequalities in superfluid

    Full text link
    We investigate general thermodynamic stability conditions for the superfluid. This analysis is performed in an extended space of thermodynamic variables containing (along with the usual thermodynamic coordinates such as pressure and temperature) superfluid velocity and momentum density. The stability conditions lead to thermodynamic inequalities which replace the Landau superfluidity criterion at finite temperatures.Comment: 7 pages, 1 figur

    Superscaling of non-quasielastic electron-nucleus scattering

    Get PDF
    The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtained from all available high-quality data for Carbon 12 by subtracting effective quasielastic cross sections based on the superscaling hypothesis. These residuals are then compared with results obtained within a scaling-based extension of the relativistic Fermi gas model, including an investigation of violations of scaling of the first kind in the region above the quasielastic peak. A way potentially to isolate effects related to meson-exchange currents by subtracting both impulsive quasielastic and impulsive inelastic contributions from the experimental cross sections is also presented.Comment: RevTeX, 34 pages including 11 figure

    Meson-exchange Currents and Quasielastic Neutrino Cross Sections

    Get PDF
    We illustrate and discuss the role of meson-exchange currents in quasielastic neutrino-nucleus scattering induced by charged currents, comparing the results with the recent MiniBooNE data for differential and integrated cross sections.Comment: 9 pages, 8 figures; Proceedings of the 30th International Workshop on Nuclear Theory IWNT30, Rila Mountains, Bulgaria, June 27 - July 2, 201

    Memory improvement in aging as a function of exposure to mood-matching music

    Get PDF
    This study examined the effect of matching musical emotion and the mood of the listener on working memory and free recall in normal aging. Memory measures were taken at baseline in healthy young and older participants, and, following a happy or sad mood induction, again after exposure to both mood-matching and -mismatching music in a counterbalanced repeated measures design. Compared to baseline, [i] recall was greater following mood-matching than mood-mismatching music in both groups, and was reduced following mood-mismatching music in older adults, [ii] working memory was greater in the mood-matching condition, but did not differ from baseline in the mismatching condition. The results have significant implications for the increasingly popular forms of intervention involving music used with older populations experiencing cognitive decline

    Bragg Spectroscopy of Vortex Lattices in Bose-Einstein condensates

    Full text link
    We have measured the velocity field of a vortex lattice within a sodium Bose-Einstein condensate using Bragg scattering. The phase gradient of the macroscopic wavefunction was mapped into the spatial structure of the diffracted atom cloud, allowing for single shot measurement of the rotation parameters. A combination of spectral and spatial information yields a complete description of the superfluid flow, coarse-grained over the lattice structure, including direct and independent measurements of the rate and sense of rotation. Signatures of the microscopic quantum rotation have also been observed.Comment: 5 pages, 5 Figures, A movie built from the CM data is available in our Webpage: http://www.physics.gatech.edu/chandra/index.htm; added Fig.5 presents new data, showing signatures of the microscopic vortex structure in the diffracted clou

    Dissipation of Quantum Turbulence in the Zero Temperature Limit

    Full text link
    Turbulence, produced by an impulsive spin-down from angular velocity Omega to rest of a cube-shaped container, is investigated in superfluid 4He at temperatures 0.08 K - 1.6 K. The density of quantized vortex lines L is measured by scattering negative ions. Homogeneous turbulence develops after time t of approximately 20 \Omega and decays as L proportional to t^(-3/2). The corresponding energy flux epsilon = nu' (kappa L)^2, which is proportional to t^(-3), is characteristic of quasi-classical turbulence at high Re with a saturated energy-containing length. The effective kinematic viscosity in the T=0 limit is nu' = 0.003 kappa, where kappa=10^(-3) cm^2 / s is the circulation quantum.Comment: 4 pages, 5 figures. Updated following referees comment

    Evolution of a Network of Vortex Loops in HeII. Exact Solution of the "Rate Equation"

    Full text link
    Evolution of a network of vortex loops in HeII due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l)n(l) of number of loops of length ll proposed by Copeland with coauthors. By using the special ansatz in the ''collision'' integral we have found the exact power-like solution of ''kinetic equation'' in stationary case. That solution is the famous equilibrium distribution n(l)l5/2n(l)\varpropto l^{-5/2} obtained earlier in numerical calculations. Our result, however, is not equilibrium, but on the contrary, it describes the state with two mutual fluxes of the length (or energy) in space of the vortex loop sizes. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of order of interline space. We also obtain that the decay of the vortex tangle obeys the Vinen equation, obtained earlier phenomenologically. We evaluate also the full rate of reconnection events. PACS-number 67.40Comment: 4 pages, submitted to PR
    corecore