7,688 research outputs found

    Better educational signage could reduce disturbance of resting dolphins

    Get PDF
    Spinner dolphins on Hawai‘i Island’s west coast (Stenella longirostris longirostris) rest by day in protected bays that are increasingly popular for recreation. Because more frequent interactions of people with these dolphins is likely to reduce rest for dolphins and to explain recent decline in dolphin abundance, the National Oceanic and Atmospheric Administration (NOAA) proposed stricter rules regarding interactions with spinner dolphins near the main Hawaiian Islands and plans to increase enforcement. Simultaneous investment in public education about both interaction rules and their biological rationale has been and is likely to be relatively low. To test the hypothesis that more educational signage will reduce human-generated disturbance of dolphins, a paper questionnaire was distributed to 351 land-based, mostly unguided visitors at three dolphin resting bays on Hawai‘i Island’s west coast. Responses indicated that visitors wanted to see dolphins, were ignorant of interaction rules, were likely to read signs explaining rules and their biological rationales, and were likely to follow known rules. Therefore, investment in effective educational signage at dolphin resting bays is recommended as one way to support conservation of spinner dolphins on Hawai‘i Island’s west coast and similar sites in the Hawaiian archipelago

    Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation

    Get PDF
    We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was provided by the ACT Government as part of an Australian Research Council Linkage Grant (LP0561817; LP110100126). Drafts of the manuscript were read by Saul Cunningham and Ben Macdonald

    Final-State Interactions in the Superscaling Analysis of Neutral-Current Quasielastic Neutrino Scattering

    Get PDF
    Effects of strong final-state interactions in the superscaling properties of neutral-current quasielastic neutrino cross sections are investigated using the Relativistic Impulse Approximation as guidance. First- and second-kind scaling are analyzed for neutrino beam energies ranging from 1 to 2 GeV for the cases of 12C, 16O and 40Ca. Different detection angles of the outgoing nucleon are considered in order to sample various nucleon energy regimes. Scaling of the second kind is shown to be very robust. Validity of first-kind scaling is found to be linked to the kinematics of the process. Superscaling still prevails even in the presence of very strong final-state interactions, provided that some kinematical restrains are kept, and the conditions under which superscaling can be applied to predict neutral-current quasielastic neutrino scattering are determined.Comment: 39 pages, 16 figures, accepted for publication in Phys. Rev.

    Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering

    Get PDF
    Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, including terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Effect of cochlear implant electrode insertion on middle-ear function as measured by intra-operative laser Doppler vibrometry

    Get PDF
    Hypothesis: The aim of this study was to investigate the impact of cochlear implant electrode insertion on middle-ear low frequency function in humans.Background: Preservation of residual low frequency hearing with addition of electrical speech processing can improve the speech perception abilities and hearing in noise of cochlear implant users. Preservation of low frequency hearing requires an intact middle-ear conductive mechanism in addition to intact inner-ear mechanisms. Little is known about the effect of a cochlear implant electrode on middle-ear function.Methods: Stapes displacement was measured in seven patients undergoing cochlear implantation. Measurements were carried out intra-operatively before and after electrode insertion. Each patient acted as his or her own control. Sound was delivered into the external auditory canal via a speaker and calibrated via a probe microphone. The speaker and probe microphone were integrated into an individually custom-made ear mould. Ossicular displacement in response to a multisine stimulus at 80 dB SPL was measured at the incudostapedial joint via the posterior tympanotomy, using an operating microscope mounted laser Doppler vibrometry system.Results: Insertion of a cochlear implant electrode into the scala tympani had a variable effect on stapes displacement. In three patients, there was little change in stapes displacement following electrode insertion. In two patients, there was a significant increase, while in a further two there was a significant reduction in stapes displacement. This variability may reflect alteration of cochlear impedance, possibly due to differing loss of perilymph associated with the electrode insertion.Conclusion: Insertion of a cochlear implant electrode produces a change in stapes displacement at low frequencies, which may have an effect on residual low frequency hearing thresholds

    Superscaling of non-quasielastic electron-nucleus scattering

    Get PDF
    The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtained from all available high-quality data for Carbon 12 by subtracting effective quasielastic cross sections based on the superscaling hypothesis. These residuals are then compared with results obtained within a scaling-based extension of the relativistic Fermi gas model, including an investigation of violations of scaling of the first kind in the region above the quasielastic peak. A way potentially to isolate effects related to meson-exchange currents by subtracting both impulsive quasielastic and impulsive inelastic contributions from the experimental cross sections is also presented.Comment: RevTeX, 34 pages including 11 figure

    Friction factors for smooth pipe flow

    Get PDF
    Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000

    Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    Get PDF
    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. Results obtained within the relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e') scaling function -- are used to illustrate the ideas involved. While NC reactions are not so well suited for scaling analyses, to a large extent the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e') one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.Comment: 4 pages, 4 figures, published in PR
    corecore