6 research outputs found

    The Maturation of Interference Suppression and Response Inhibition: ERP Analysis of a Cued Go/Nogo Task - Fig 2

    Get PDF
    <p><b>Electrodes used for EEG analyses for children (A) and adults (B).</b> Note: squares depict electrodes used for LRP calculation, circles those used for the frontal N2, triangles those used for the fronto-central N2, and diamonds those used for the central N2.</p

    The Maturation of Interference Suppression and Response Inhibition: ERP Analysis of a Cued Go/Nogo Task

    No full text
    <div><p>Inhibitory control is a core function that allows us to resist interference from our surroundings and to stop an ongoing action. To date, it is not clear whether inhibitory control is a single process or whether it is composed of different processes. Further, whether these processes are separate or clustered in childhood is under debate. In this study, we investigated the existence and development of two hypothesized component processes of inhibitory control–interference suppression and response inhibition–using a single task and event related potential components. Twenty 8-year-old children and seventeen adults performed a spatially cued Go/Nogo task while their brain activity was recorded using electroencephalography. Mean N2 amplitudes confirmed the expected pattern for response inhibition with both the children and the adults showing more negative N2 for Nogo vs. Go trials. The interference suppression N2 effect was only present in adults and appeared as a more negative N2 in response to Go trials with a congruent cue than Go trials with an incongruent cue. Contrary to previous findings, there was no evidence that the interference suppression N2 effect was later occurring than the response inhibition N2 effect. Overall, response inhibition was present in both the children and the adults whereas interference suppression was only present in the adults. These results provide evidence of distinct maturational processes for both component processes of inhibitory control, with interference suppression probably continuing to develop into late childhood.</p></div

    Task and experimental stimuli.

    No full text
    <p>(A) The 6 screen pictures represent the different stages of the task. (B) Stimuli: examples of the four possible conditions. In this example, the participants were asked to feed the orange animals (i.e, orange animals were Go trials and blue animals were Nogo trials). (1) Go Congruent (GC); (2) Go Incongruent (GI); (3) Nogo Congruent (NGC) and (4) Nogo Incongruent (NGI). The cue was presented in the top or in the bottom half of the screen. Four different animals for each color were used.</p

    The N2 component.

    No full text
    <p>Stimulus-locked grand average ERP waveforms in response to GC (black dashed line), GI (red dotted line) and NGC (blue solid line) at electrodes Fz, FCz and Cz, for children (A) and adults (D). Grand-averaged difference waveforms computed as GI–GC (green dashed line; <i>interference suppression N2 effect</i>) and NGC–GC (yellow solid line; <i>response inhibition N2 effect</i>) at electrodes Fz, FCz and Cz, in children (B) and adults (E). Note: The window used for N2 analysis in each group is marked by the grey area (300-400ms for the children and 200-300ms for the adults). The topographies represent the difference within each window of analysis for interference suppression (up) and response inhibition (down) in children (C) and adults (F). Please also note that the scale for the ERP waveforms is different between the children and adults’ data; being -15 +15 μV for the former (A) and -5 +5 μV for the latter (D)</p

    Correlations between antisocial behaviour scores (as measured by the Self Report of Youth Behaviour) and LPP difference scores (negative images minus other images, collapsed across the whole LPP window: 400-1000msec after stimulus onset).

    No full text
    <p>Note: Correlations are shown for the minimal-intervention group (A) and the extended-intervention group (B). Lower levels of antisocial behaviour were associated with better emotion processing in the minimal-intervention group only.</p

    Registered replication report on Fischer, Castel, Dodd, and Pratt (2003)

    Get PDF
    The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
    corecore