617 research outputs found
Tree-body loss of of trapped ultracold Rb atoms due to a Feshbach resonance
The loss of ultracold trapped atoms in the vicinity of a Feshbach resonance
is treated as a two-stage reaction, using the Breit-Wigner theory. The first
stage is the formation of a resonant diatomic molecule, and the second one is
its deactivation by inelastic collisions with other atoms. This model is
applied to the analysis of recent experiments on Rb, leading to an
estimated value of cms for the deactivation rate
coefficient.Comment: LaTeX, 4 pages with 1 figures, uses REVTeX4, uses improved
experimental dat
Electronic energy relaxation and transition frequency jumps of single molecules at 30 mK
Transition frequency jumps for single terrylene molecules in a polyethylene matrix caused by resonant laser irradiation are investigated at 30 mK. These jumps are not accompanied by substantial sample heating. A model for the effect is: proposed, based on the interaction of tunneling two-level systems (TLSs) surrounding the single molecule with high-energy nonthermal phonons emitted by the molecule during electronic energy relaxation. The radius of the effective interaction volume is estimated to be r(m) approximate to 12.5 nm, and the interaction cross section for nonequilibrium phonon -TLS scattering is estimated as similar to 10(-22) cm(-2)
Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes
We present the first experimental study that maps the transformation of
nuclear quadrupole resonances from the pure nuclear quadrupole regime to the
quadrupole-perturbed Zeeman regime. The transformation presents an interesting
quantum-mechanical problem, since the quantization axis changes from being
aligned along the axis of the electric-field gradient tensor to being aligned
along the magnetic field. We achieve large nuclear quadrupole shifts for I =
3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When
the magnetic and quadrupolar interactions are of comparable size, perturbation
theory is not suitable for calculating the transition energies. Rather than use
perturbation theory, we compare our data to theoretical calculations using a
Liouvillian approach and find excellent agreement.Comment: 4 pages, 4 figure
Stability of fermionic Feshbach molecules in a Bose-Fermi mixture
In the wake of successful experiments in Fermi condensates, experimental
attention is broadening to study resonant interactions in degenerate Bose-Fermi
mixtures. Here we consider the properties and stability of the fermionic
molecules that can be created in such a mixture near a Feshbach resonance (FR).
To do this, we consider the two-body scattering matrix in the many-body
environment, and assess its complex poles. The stability properties of these
molecules strongly depend on their centre-of-mass motion, because they must
satisfy Fermi statistics. At low centre-of-mass momenta the molecules are more
stable than in the absence of the environment (due to Pauli-blocking effects),
while at high centre-of-mass momenta nontrivial many body effects render them
somewhat less stable
Microscopic Dynamics in a Strongly Interacting Bose-Einstein Condensate
An initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a
carefully controlled magnetic field pulse in the vicinity of a Feshbach
resonance. This pulse probed the strongly interacting regime for the
condensate, with calculated values for the diluteness parameter (na^3) ranging
from 0.01 to 0.5. The field pulse was observed to cause loss of atoms from the
condensate on remarkably short time scales (>=10 microsec). The dependence of
this loss on magnetic field pulse shape and amplitude was measured. For
triangular pulses shorter than 1 ms, decreasing the pulse length actually
increased the loss, until extremely short time scales (a few tens of
microseconds) were reached. Such time scales and dependencies are very
different from those expected in traditional condensate inelastic loss
processes, suggesting the presence of new microscopic BEC physics.Comment: 4 pages in latex2E, 4 eps figures; revised Fig.1, revised
scatt.lengths, added discussion, new refs., resubmitted to PR
Unveiling a Population of X-ray Non-Detected AGN
We define a sample of 27 radio-excess AGN in the Chandra Deep Field North by
selecting galaxies that do not obey the radio/infrared correlation for
radio-quiet AGN and star-forming galaxies. Approximately 60% of these
radio-excess AGN are X-ray undetected in the 2 Ms Chandra catalog, even at
exposures of > 1 Ms; 25% lack even 2-sigma X-ray detections. The absorbing
columns to the faint X-ray-detected objects are 10^22 cm^-2 < N_H < 10^24
cm^-2, i.e., they are obscured but unlikely to be Compton thick. Using a local
sample of radio-selected AGN, we show that a low ratio of X-ray to radio
emission, as seen in the X-ray weakly- and non-detected samples, is correlated
with the viewing angle of the central engine, and therefore with obscuration.
Our technique can explore the proportion of obscured AGN in the distant
Universe; the results reported here for radio-excess objects are consistent
with but at the low end of the overall theoretical predictions for
Compton-thick objects.Comment: Accepted for publication in the Astrophysical Journal, 15 pages, 10
figures, 4 table
Atom--Molecule Coherence in a Bose-Einstein Condensate
Coherent coupling between atoms and molecules in a Bose-Einstein condensate
(BEC) has been observed. Oscillations between atomic and molecular states were
excited by sudden changes in the magnetic field near a Feshbach resonance and
persisted for many periods of the oscillation. The oscillation frequency was
measured over a large range of magnetic fields and is in excellent quantitative
agreement with the energy difference between the colliding atom threshold
energy and the energy of the bound molecular state. This agreement indicates
that we have created a quantum superposition of atoms and diatomic molecules,
which are chemically different species.Comment: 7 pages, 6 figure
Spitzer Power-law AGN Candidates in the Chandra Deep Field-North
We define a sample of 62 galaxies in the Chandra Deep Field-North whose
Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of
luminous AGN. We study the multiwavelength properties of this sample, and
compare the AGN selected in this way to those selected via other Spitzer
color-color criteria. Only 55% of the power-law galaxies are detected in the
X-ray catalog at exposures of >0.5 Ms, although a search for faint emission
results in the detection of 85% of the power-law galaxies at the > 2.5 sigma
detection level. Most of the remaining galaxies are likely to host AGN that are
heavily obscured in the X-ray. Because the power-law selection requires the AGN
to be energetically dominant in the near- and mid-infrared, the power-law
galaxies comprise a significant fraction of the Spitzer-detected AGN population
at high luminosities and redshifts. The high 24 micron detection fraction also
points to a luminous population. The power-law galaxies comprise a subset of
color-selected AGN candidates. A comparison with various mid-infrared color
selection criteria demonstrates that while the color-selected samples contain a
larger fraction of the X-ray luminous AGN, there is evidence that these
selection techniques also suffer from a higher degree of contamination by
star-forming galaxies in the deepest exposures. Considering only those
power-law galaxies detected in the X-ray catalog, we derive an obscured
fraction of 68% (2:1). Including all of the power-law galaxies suggests an
obscured fraction of < 81% (4:1).Comment: Accepted for publication in the Astrophysical Journal, 27 pages, 20
figures, 5 tables, version with high-resolution figures and online-only
tables available at: http://frodo.as.arizona.edu/~jdonley/powerlaw
- âŠ