25 research outputs found

    Effects of velocity and limb loading on the coordination between limb movements during walking.

    Get PDF
    The authors investigated the effects of velocity (increasing from 0.5 to 5.0 km/hr in steps of 0.5 km/hr) and limb loading on the coordination between arm and leg movements during treadmill walking in 7 participants. Both the consistency of the individual limb movements and the stability of their coordination increased with increasing velocity; the frequency coordination between arm and leg movements was 2:1 at the lower velocities and 1:1 at the higher velocities. The mass manipulation affected the individual limb movements but not their coordination, indicating that a stable walking pattern was preserved. The results differed qualitatively from those obtained in studies on bimanual interlimb coordination, implying that the dynamical principles identified therein are not readily applicable to locomotion

    Workshop on The Mobile Office

    No full text
    This workshop discusses the balance between safety and productivity as automated vehicles turn into 'mobile offices': spaces where non-driving activities are performed during one’s daily commute. Technological developments reduce the active role of the human driver that might, nonetheless, require occasional intervention. To what extent are drivers allowed to dedicate resources to non-driving work-related activities? To address this critical question, the workshop brings together a diverse community of researchers and practitioners that are interested in questions as follows: what non-driving activities are likely to be performed on one’s way to work and back; what is a useful taxonomy of these tasks; how can various tasks be studied in experimental settings; and, what are the criteria to assess human performance in automated vehicles. To foster further dialogue, the outcome of the workshop will be an online blog where attendees can contribute their own thoughts: https://medium.com/the-mobile-office

    Workshop on The Mobile Office

    No full text
    This workshop discusses the balance between safety and productivity as automated vehicles turn into 'mobile offices': spaces where non-driving activities are performed during one’s daily commute. Technological developments reduce the active role of the human driver that might, nonetheless, require occasional intervention. To what extent are drivers allowed to dedicate resources to non-driving work-related activities? To address this critical question, the workshop brings together a diverse community of researchers and practitioners that are interested in questions as follows: what non-driving activities are likely to be performed on one’s way to work and back; what is a useful taxonomy of these tasks; how can various tasks be studied in experimental settings; and, what are the criteria to assess human performance in automated vehicles. To foster further dialogue, the outcome of the workshop will be an online blog where attendees can contribute their own thoughts: https://medium.com/the-mobile-office

    Adaptations in arm movements for added mass to wrist or ankle during walking

    No full text
    The aim of the present study was to answer the question whether adaptations to local perturbations are restricted to the perturbed limb or whether they induce a reorganization of all co-moving limbs. Specifically, we studied the adaptations in arm movements to mass perturbations in seven healthy adults during walking on a treadmill. Four different perturbation conditions were employed in random order (no perturbation, mass added to both wrists, to the right wrist, and to the right ankle). During each experimental condition ten different belt speeds (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 km/h) were successively offered, while the ann movements and the electromyographic activity of the musculus deltoid posterior and anterior were measured. The results indicated that cadence was not affected by adding mass to the wrist or ankle. However, adding mass to a wrist not only resulted in an increase in muscle activity and a decrease of movement amplitude of the perturbed arm, but also in alterations in the non-perturbed arm. Notably, adding mass to one ankle induced adaptive changes in both arms, in that both muscle activity and arm movement increased. The present results indicate that during walking the loading of one of the limbs induces a general reorganization, involving all participating bodily segments, presumably to maintain balance while providing rhythm constancy

    History and Future of Human-Automation Interaction

    No full text
    We review the history of human-automation interaction research, assess its current status and identify future directions. We start by reviewing articles that were published on this topic in the International Journal of Human-Computer Studies during the last 50 years. We find that over the years, automated systems have been used more frequently (1) in time-sensitive or safety-critical settings, (2) in embodied and situated systems, and (3) by non-professional users. Looking to the future, there is a need for human-automation interaction research to focus on (1) issues of function and task allocation between humans and machines, (2) issues of trust, incorrect use, and confusion, (3) the balance between focus, divided attention and attention management, (4) the need for interdisciplinary approaches to cover breadth and depth, (5) regulation and explainability, (6) ethical and social dilemmas, (7) allowing a human and humane experience, and (8) radically different human-automation interaction
    corecore