50 research outputs found

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2. The HIV-1 Tat transactivator protein enhances viral gene expression by exclusively recruiting the Cdk9-Cyclin T1 P-TEFb complex to a RNA element in nascent viral transcripts called TAR. The expression patterns of Cyclin T1 and Cyclin T2 in primary monocytes and CD4<sup>+ </sup>T cells suggests that Cyclin T2 may be generally involved in expression of constitutively expressed genes in quiescent cells, while Cyclin T1 may be involved in expression of genes up-regulated during macrophage differentiation, T cell activation, and conditions of increased metabolic activity To investigate this issue, we wished to identify the sets of genes whose levels are regulated by either Cyclin T2 or Cyclin T1.</p> <p>Findings</p> <p>We used shRNA lentiviral vectors to stably deplete either Cyclin T2 or Cyclin T1 in HeLa cells. Total RNA extracted from these cells was subjected to cDNA microarray analysis. We found that 292 genes were down- regulated by depletion of Cyclin T2 and 631 genes were down-regulated by depletion of Cyclin T1 compared to cells transduced with a control lentivirus. Expression of 100 genes was commonly reduced in either knockdown. Additionally, 111 and 287 genes were up-regulated when either Cyclin T2 or Cyclin T1 was depleted, respectively, with 45 genes in common.</p> <p>Conclusions</p> <p>These results suggest that there is limited redundancy in genes regulated by Cyclin T1 or Cyclin T2.</p

    Expression profile of genes regulated by activity of the Na-H exchanger NHE1

    Get PDF
    BACKGROUND: In mammalian cells changes in intracellular pH (pH(i)), which are predominantly controlled by activity of plasma membrane ion exchangers, regulate a diverse range of normal and pathological cellular processes. How changes in pH(i )affect distinct cellular processes has primarily been determined by evaluating protein activities and we know little about how pH(i )regulates gene expression. RESULTS: A global profile of genes regulated in mammalian fibroblasts by decreased pH(i )induced by impaired activity of the plasma membrane Na-H exchanger NHE1 was characterized by using cDNA microarrays. Analysis of selected genes by quantitative RT-PCR, TaqMan, and immunoblot analyses confirmed results obtained from cDNA arrays. Consistent with established roles of pH(i )and NHE1 activity in cell proliferation and oncogenic transformation, grouping regulated genes into functional categories and biological pathways indicated a predominant number of genes with altered expression were associated with growth factor signaling, oncogenesis, and cell cycle progression. CONCLUSION: A comprehensive analysis of genes selectively regulated by pH(i )provides insight on candidate targets that might mediate established effects of pH(i )on a number of normal and pathological cell functions
    corecore