42 research outputs found

    Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica

    Get PDF
    Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs) was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs) were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m2/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB), performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ΔH° was 90.53 kJ/mol. Positive ΔS° (300 J/mol) and negative ΔG° (-6.42 kJ/mol) was recorded, indicating the spontaneous of the adsorption process and naturally favorable.

    Kinetic And Thermodynamics Of Methylene Blue Adsorption Onto Zero Valent Iron Supported On Mesoporous Silica

    Get PDF
    Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs) was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs) were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m2/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB), performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ÄH° was 90.53 kJ/mol. Positive ÄS° (300 J/mol) and negative ÄG° (-6.42 kJ/mol) was recorded, indicating the spontaneous of the adsorption process and naturally favorable

    Dynamical approach to heavy ion-induced fission

    Get PDF
    Deep inelastic collisions (DICs) can compete strongly with fusion in collisions of heavy nuclei. However, standard coupled-channels calculations do not take DIC processes into account. As a result, calculations have been shown to overestimate the fusion cross-sections, resulting in a discrepancy between experimental data and theoretical calculations, particularly at energies above the fusion barrier. To investigate this discrepancy, we conducted a series of experiments using the ANU 14UD tandem accelerator and the CUBE 2-body fission spectrometer to examine the competition between transfer/DIC and fusion. In particular, fusion-fission and 3-body fission yields have been extracted for 34S + 232Th and 40Ca + 232Th systems. This work shows that the transfer-fission probability is enhanced relative to fusion-fission for 40Ca + 232Th, when compared to 34S+ 232Th. It is suggested that the enhancement of this DIC process in 40Ca + 232Th is linked to an increase in the density overlap of the colliding nuclei as a function of the charge product and contributes to fusion hindrance

    Efficacy and Safety of Cinobufacin Combined with Chemotherapy for Advanced Breast Cancer: A Systematic Review and Meta-Analysis

    No full text
    Background. Cinobufacin is a Chinese patent medicine widely used for breast cancer in China. However, no systematic review and meta-analysis have been published to validate its effects in breast cancer treatment. We, therefore, summarize the efficacy and safety of Cinobufacin combined with chemotherapy in order to provide rigid evidence for its clinical application. Methods. By searching multiple databases incepted to December 2019, the RCTs of breast cancer patients treated with Cinobufacin were screened according to the inclusion criteria, and the meta-analysis and sensitivity analysis were conducted using RevMan5.3. Results. A total of 1163 articles were retrieved, and 16 studies were included. The total sample size was 1331 cases, including 666 cases in the treatment group receiving Cinobufacin combined with chemotherapy and 665 cases in the control group receiving chemotherapy alone. Our study found that the ORR (overall response rate) (RR = 1.35, 95% CI: [1.23, 1.49], P<0.00001), CBR (clinical benefit rate) (RR = 1.14, 95% CI: [1.08, 1.21], P<0.00001), KPS scores (RR = 1.98, 95% CI: [1.45, 2.68], P<0.0001), and pain relief rate (RR = 1.34, 95% CI: [1.01, 1.78] P=0.04 of the Cinobufacin combined with chemotherapy group were better than those of the chemotherapy group, and the difference was statistically significant. Our study also discovered that the tumor markers (CA125, CA153, and CEA) in the Cinobufacin combined with chemotherapy group were lower than those in the chemotherapy group, which heterogeneity was derived from the low-quality literature included in the study, but the results were robust. In addition, in terms of safety, we found that the incidences of gastrointestinal reactions (RR = 0.58, 95% CI: [0.48, 0.70], P<0.00001), liver and kidney damage (RR = 0.57, 95% CI: [0.38, 0.84], P=0.004), and hair loss (RR = 0.61, 95% CI: [0.40, 0.92], P=0.02) in the Cinobufacin combined chemotherapy group were lower than those in the chemotherapy group, and the difference was statistically significant, but the incidences of peripheral neurotoxicity (RR = 0.69, 95% CI: [0.26, 1.85], P=0.46) and myelosuppression (RR = 0.78, 95% CI: [0.46, 1.34], P=0.37) in the combined group were similar to those of the chemotherapy group, and the difference was not statistically significant. Conclusions. Cinobufacin combined with chemotherapy can improve the clinical efficacy of breast cancer patients, enhance the quality of life of the patients, reduce the value of tumor markers such as CA125, CA153, and CEA, and lower the occurrence of adverse reactions such as gastrointestinal reactions, liver and kidney damage, and hair loss

    Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation

    No full text
    Understanding the physicochemical properties of starch during grain development and the mechanism for resistant starch (RS) accumulation will provide useful information for improving the RS content of wheat. The grains from wheat mutant lines with high RS contents and their corresponding wild-type control were analyzed to characterize the structural and physicochemical properties of wheat starch. A transcriptomic analysis was used to analyze the differentially expressed genes (DEGs) involved in RS accumulation. The results showed that the RS content increased with grain development, along with the total starch content, but a larger increase was observed in the middle and later stages of grain filling. The X-ray diffraction peak intensity and relative crystallinity of starch exhibited the lowest and highest values at 10 days after anthesis, respectively. Regarding the thermal properties of starch, the peak temperature and conclusion temperature generally decreased with grain development; however, the enthalpy values showed no apparent regularity. Compared to control cultivar ZM22, the RS639 and RS683 lines with high RS contents showed high amylose contents and high relative crystallinity and a large proportion of 2.0~9.8 µm starch granules. Furthermore, the transcriptomics analysis revealed that the average relative expression of the glucan-branching enzyme (GBE) α-1,4 glucan phosphorylase (Pho) and starch synthase (SS) in ZM22 was 2.47-, 2.70-, and 2.56-fold higher than that in RS639, respectively; which indicates that the downregulation of the expression of genes encoding GBE, Pho, and SS in wheat grain promotes the accumulation of RS

    Toxicity of soil labile aluminum fractions and aluminum species in soil water extracts on the rhizosphere bacterial community of tall fescue

    No full text
    Different forms of aluminum (Al) in soil can be toxic to plants and the bacterial community. In our previous study, the distribution and toxicity to plants of soil Al species and soil labile Al fractions were examined. However, the toxicity of different forms of Al on the bacterial community has not been completely studied. In this study, five soil samples (pH: 4.92, 6.17, 6.62, 6.70, 8.51) were collected from Lichuan, China. Tall fescue was planted in rhizosphere boxes with those soils for 120 days, The toxicity of soil Al species and soil labile Al fractions on the bacterial community of near-rhizosphere (NR) soils and far-rhizosphere (FR) soils were analyzed. The effect of different forms of Al on bacterial community between NR and FR soils was small, but the difference was obvious according to the different spatial distribution of samples. An individual bacterial community has eosinophilia, and most bacterial communities are tolerant of heavy metals (e.g., Cu, Zn, Cd). The toxicity of exchangeable Al has a strong effect on the bacterial community. Meanwhile, the toxicity of Al3+ to the bacterial community is strong. In this study, the key finding was that the toxicity of the Al-F- complex toward the bacterial community and plants was different. AlF2+, AlF2+, AlF3, and AlF4- are toxic for the bacterial community, and the correlation decreases with the addition of F-. This finding is of considerable significance to the treatment of acid-contaminated soil and the study of the tolerance mechanism of plants toward Al
    corecore